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Abstract. In this paper, we show that in order to obtain the Tsallis entropy
rate for stochastic processes, we can use the limit of conditional entropy, as
it was done for the case of Shannon and Renyi entropy rates. Using that we
can obtain Tsallis entropy rate for stationary Gaussian processes. Finally,
we derive the relation between Renyi, Shannon and Tsallis entropy rates for
stationary Gaussian processes.
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1 Introduction
In 1948, Shannon used some axioms to introduce Shannon entropy. Then
Renyi (1961) and Tsallis (1988) generalized this idea and obtained different
entropic forms, which in special cases reduce to Shannon entropy.

By the introduction of entropy in the probability theory, entropy and
stochastic processes became linked, and the entropy rate was defined for
stochastic processes after Shannon proved that the Shannon entropy rate ex-
ists for stationary stochastic processes (Shannon, 1948). The rate of Shannon
entropy is widely studied for stochastic processes, especially for stationary
processes with discrete or continuous time, (see Girardin and Limnios, 2004,
and references therein). For example, the rate of Shannon entropy for a sta-
tionary Gaussian process was obtained by Kolmogorov (1958). The rate of
Renyi entropy for stochastic processes was obtained by Rached et al. (1999).
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Up to now, the Renyi entropy rate for some stochastic processes have been
studied, for example, by Rached et al. (1999, 2004) and Golshani and Pasha
(2010). But in the case of the Tsallis entropy, the rate of entropy for stochas-
tic processes has not been obtained for any processes yet. In this paper, we
have obtained the rate of Tsallis entropy for a stationary Gaussian process
with discrete-time.

The application of the rate of entropy can be found in many areas
such as economics (Bentes, et al, 2008), medical sciences (Scalassara et al.,
2008) statistical mechanics (Kirchnov, 2008), stochastic processes (Peres and
Quas, 2011; Rached et al., 2004), statistics and related fields (Andai, 2009),
(Jenssen and Eltoft, 2008) and biomedical engineering (Lake, 2006).

This paper is organized as follows. In Section 2, we propose some prop-
erties of measures of information that are common for Shannon, Renyi and
Tsallis entropies. In Section 3, we show that in order to obtain the Tsallis
entropy rate for stochastic processes, we can use the limit of conditional en-
tropy, as it was done for the case of Shannon and Renyi entropy rates; and
from this relation we obtain the rate of Tsallis entropy for stationary Gaus-
sian processes and show that this quantity is related to a spectral density
function. We also show that for autoregressive and moving average processes,
the rate of Tsallis entropy is independent of their representations. Finally, in
Section 4 we derive the relation between Renyi, Shannon and Tsallis entropy
rates for stationary Gaussian processes.

2 Shannon, Renyi and Tsallis Entropies
Let X be a random variable having an absolutely continuous distribution
with density function f(x). The Shannon entropy is defined as (Shannon,
1948),

h1(X) = −
∫
R
f(x) ln f(x)dx,

and the Renyi entropy is given by (Renyi, 1961)

hα(X) =
1

1− α
ln

∫
R
fα(x)dx α > 0 , α ̸= 1,

and the Tsallis entropy is given by (Tsallis, 1988)

Sα(X) =
1

1− α

(∫
R
fα(x)dx− 1

)
α > 0 , α ̸= 1.
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The limit of Tsallis entropy and Renyi entropy, as α→ 1, is

h1(X) = lim
α→1

hα(X) = lim
α→1

Sα(X) = −
∫
R
f(x) ln f(x)dx.

Remark 1. For a random variable, with normal distribution, the Renyi
entropy is hα(X) = 1

2 ln 2πσ
2α

1
α−1 and the Shannon entropy is h1(X) =

1
2 ln 2πeσ

2.

In the following example, we obtain Tsallis entropy for normal distribution.

Example 1. The Tsallis entropy for the random variable with normal dis-
tribution is:

Sα(X) =
1

1− α

[∫
R

(
1√
2πσ2

)α
e

−α
2σ2 (X−µ)2dx− 1

]
=

1

1− α

[
(2πσ2)

1−α
2 α− 1

2

∫
R

α
1
2

√
2πσ2

e
−α
2σ2 (X−µ)2dx− 1

]

=
1

1− α

[(
(2πσ2)1−α

α

) 1
2

− 1

]
.

Now, we review the definition of conditional entropy for three measures
of information. The conditional Shannon entropy is (Cover and Thomas,
2006)

h1(Y |X) = −
∫
R2

f(x)f(y|x) ln f(y|x)dxdy,

if the integral exist. For the conditional Renyi entropy we have (Golshani
and Pasha, 2010)

hα(Y |X) =
1

1− α
ln

∫
R2

fα(x, y)dxdy∫
R
fα(x)dx

, α > 0, α ̸= 1,

if the integrals exist.
Now, we propose definitions of the conditional Tsallis entropy and the

joint Tsallis entropy. In order to define these for continuous random variables,
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we propose definitions similar to the case of discrete random variables, which
was introduced by Abe (2000).

Definition 1. For two random variables X and Y , with the joint probability
density function f(x, y) and conditional probability density function f(y|x),
the joint Tsallis entropy is defined as

Sα(X,Y ) =
1

1− α

(∫
R2

fα(x, y)dxdy − 1

)
α > 0 , α ̸= 1,

and the conditional Tsallis entropy is defined as

Sα(Y |X) =
1

1− α


∫
R2

fα(x, y)dxdy∫
R
fα(x)dx

− 1

 α > 0 , α ̸= 1, (1)

if the integrals exist.

Now, we propose some properties of measures of information that are com-
mon for Shannon, Renyi and Tsallis entropies which were respectively proved
for Shannon (Cover and Thomas, 2006) and Renyi (Golshani and Pasha,
2010) entropies. Now, we prove the following for Tsallis entropy:

Proposition 1. Sα(X) ≥ 0 for α ≥ 1.

Proposition 2. The Tsallis entropy is invariant under a location transforma-
tion of the random variable. i.e., for m ∈ R, we have: Sα(X +m) = Sα(X).

Proposition 3. The Tsallis entropy is not invariant under a scale transfor-
mation of the random variable. More explicitly, for m ∈ R, we have:

Sα(mX) = |m|1−α
(
Sα(X) +

1

1− α

)
− 1

1− α
.
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Proof. let Y = mX, so fY (y) = 1
|m|fX(

y
m) and

Sα(Y ) =
1

1− α

(∫
R
fαY (y)dy − 1

)
=

1

1− α

{∫
R

(
1

|m|

)α
fαX

( y
m

)
dy − 1

}
=

1

1− α

{∫
R

(
1

|m|

)α−1 1

|m|
fαX

( y
m

)
dy − 1

}

=
1

1− α

(
|m|1−α

∫
R
fαX(x)dx− 1

)
=

1

1− α

[
|m|1−α

{
(1− α)Sα(X) + 1

}
− 1
]

= |m|1−α
(
Sα(X) +

1

1− α

)
− 1

1− α
.

The following property is a relation between the conditional entropy and
the joint entropy which was proved for Shannon (Cover and Thomas, 2006)
and Renyi (Golshani and Pasha, 2010) entropies.

Proposition 4. Sα(X,Y ) = Sα(X) + Sα(Y |X).

The complete proof of this relation, for the case of discrete random variables
is given by Furuichi (2006). For the case of continuous random variables, the
proof is done in a similar way.

Remark 2. For two independent random variables, f(x, y) = f(x).f(y), if
we use relation (1), we get: Sα(Y |X) = Sα(Y ).

Theorem 1. (Chain rule) Let (X1, . . . , Xn) be a random vector with prob-
ability density function f(x1, . . . , xn) and having finite Tsallis entropy for
every n, then, (Furuichi, 2006):

Sα(X1, . . . , Xn) =

n∑
i=1

Sα(Xi|Xi−1, · · · , X1), ∀α.
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3 Entropy Rate
In this section, we propose definitions for obtaining entropy rate for stochastic
processes without considering the measure of information.

For a discrete-time process X = (Xn)n>1, the entropy at time n is defined
as the entropy of the n-dimensional random vector of X, and the entropy
rate is defined by the limit of the entropy at time n divided by n, when the
limit exists, namely: H(X) =: limn→∞

1
nH(X1, . . . , Xn) This definition is

a regular definition for the entropy rate. By using the chain rule, another
relation for obtaining the rate of entropy is obtained, based on the limit of
conditional entropy, namely, H(X) = limn→∞H(Xn|Xn−1, . . . , X1). This
relation is obtained in Cover and Thomas (2006) and Golshani and Pasha
(2010) for Shannon and Renyi entropies, respectively. Also, for Tsallis en-
tropy, we can get this relation by using the chain rule (Theorem 1). So we
conclude that when the chain rule holds for the measure of entropy, then we
can use the relation based on the limit of conditional entropy for obtaining
the rate of entropy.

We know that a discrete-time process is stationary if the distribution
of (Xn1+h, . . . , Xnk+h) is independent of h for any positive integer k and
n1, . . . , nk. Then, for conditional entropy, we get:

H(Xnk
|Xn1 , · · · , Xnk−1

) = H(Xnk+h|Xn1+h, . . . , Xnk−1+h)

and the rate of entropy for a stationary process is equal to

H(X) = lim
n→∞

H(X1|X0, · · · , X2−n) = H(X1|X0, · · · ). (2)

This relation constitutes a way for obtaining the rate of entropy for stationary
processes.

In this paper we denote the rate of Shannon entropy by h1(X), the rate
of Renyi entropy by hα(X) and the rate of Tsallis entropy by Sα(X).

Now, similar to the cases of the rates of Renyi entropy and Shannon
entropy for a stationary Gaussian process, we use relation (2) to obtain the
rate of Tsallis entropy for this process and show that this quantity is related
to a spectral density function and also show that for autoregressive and
moving average processes, the rate of Tsallis entropy is independent of their
representations.

Let stationary processes (Xn)n∈Z , where each Xn is a real random vari-
able defined on a probability space (Ω, β, P ) be regular (or purely non-
deterministic) with its mean being zero and with autocovariance function
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γ(k) = E(XnXn+k), its Fourier transform is the spectral density function
f(λ), i.e.:

f(λ) =
1

2π

∞∑
k=−∞

γ(k)e−iλk − π 6 λ 6 π.

For stationary Gaussian processes, we have the following representation (Ihara,
1993),

Xn =
∞∑
j=0

φjξn−j n ∈ Z, (3)

where φj , j > 0 are constants, so that
∑∞

j=0 φ
2
j <∞ and {ξn} is a sequence

of independent normal random variables with identical distribution N(0, 1),
and βn(ξ) = βn(X), (βn(X) is the σ-field generated by (Xk, k 6 n)). This
expression is known as the moving average representation of the process.

Now, for these processes, we have the following theorems.

Theorem 2. For stationary Gaussian processes, the rate of Shannon entropy
is h1(X) = 1

2 ln 2πe +
1
4π

∫ π
−π log 2πf(λ)dλ, (Cover and Thomas, 2006) and

the rate of Renyi entropy is equal to hα(X) = 1
2 ln 2πα

1
α−1+ 1

4π

∫ π
−π log 2πf(λ)dλ,

(Golshani and Pasha, 2010).

By the following theorem, we obtain the rate of Tsallis entropy for these
processes.

Theorem 3. For stationary Gaussian processes, the rate of Tsallis entropy
is equal to:

Sα(X) =
1

1− α

(∣∣∣∣2π exp 1

2π

∫ π

−π
log f(λ)dλ

∣∣∣∣ 1−α
2

√
(2π)1−α

α
− 1

)
. (4)

Proof. Using relations (2) and (3), we have:

Sα(X) = Sα(X1|X0, . . . ) = Sα

 ∞∑
j=0

φjξ1−j

∣∣∣X0, . . .


= Sα

φ0ξ1 +

∞∑
j=1

φjξ1−j

∣∣∣X0, . . .

 .

Since the σ-field generated by (ξk, k 6 1) is equal to the σ-field generated
by (Xk, k 6 1), and ξ1 is independent of (ξk, k 6 0), thus ξ1 is independent
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of (Xk, k 6 0). On the other hand since
∞∑
j=1

φjξ1−j ∈ σ(Xk, k 6 0), it is a

function of (Xk, k 6 0) and by Proposition 2, Proposition 3 and Remark 2
we get:

Sα(X) = Sα(φ0ξ1)

= |φ2
0|

1−α
2

(
Sα(ξ1) +

1

1− α

)
− 1

1− α
.

Since ξ1 has a normal distribution by Example 1, we have:

Sα(X) =
1

1− α

(
|φ2

0|
1−α
2

√
(2π)1−α

α
− 1

)
.

Also, from the relationship between the spectral density function of the pro-
cess and the coefficients φj in relation (3), we have

φ0 =
√
2π exp

1

4π

∫ π

−π
log f(λ)dλ,

(Ihara, 1993). So the Tsallis entropy rate is

Sα(X) =
1

1− α

(∣∣∣∣2π exp 1

2π

∫ π

−π
log f(λ)dλ

∣∣∣∣ 1−α
2

√
(2π)1−α

α
− 1

)
where f is a spectral density function of process.

Proposition 5. The rate of Tsallis entropy for autoregressive-moving aver-
age processes (ARMA(p,q)) is:

Sα(X) =
1

1− α

(√
(2π)1−α

α
− 1

)

Proof. From (Ihara, 1993), the spectral density functions of these processes
is:

f(λ) =
1

2π

q∏
k=1

|eiλ − βk|2

p∏
j=1

|eiλ − αj |2
,
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where |αj | < 1, |βk| 6 1. So, from relation (4), we have:

Sα(X) =
1

1− α

(∣∣∣2π exp 1

2π

(∫ π

−π
log

1

2π
dλ+

q∑
k=1

∫ π

−π
log |eiλ − βk|2dλ

−
p∑
j=1

∫ π

−π
log |eiλ − αj |2dλ

)∣∣∣ 1−α
2

√
(2π)1−α

α
− 1
)
.

Now by using the fact that for |θ| 6 1,
∫ π
−π log |e

iλ− θ|2dλ = 0 (Ihara, 1993),
the result is obtained.

Remark 3. For autoregressive-moving average processes (ARMA(p,q)) the
rate of Shannon entropy is h1(X) = 1

2 ln 2πe and the rate of Renyi entropy
is hα(X) = 1

2 ln 2πα
1

α−1

4 Relation between Renyi, Shannon and Tallis En-
tropy Rates

In this section, we derive the relation between Renyi, Shannon and Tsallis
entropy rates. For this purpose, we first consider the following property for
the Renyi entropy.

Remark 4. For α1 < α2, hα1(X) > hα2(X), for all X; and equality holds if
and only if X is a uniform random variable.

Using this remark, we have the following inequalities between Renyi and
Shannon entropies:

1. For α < 1, h1(·) < hα(·), (5)
2. For α > 1, hα(·) < h1(·). (6)
Now, we obtain the relation between Renyi and Tsallis entropies.

Proposition 6. For Renyi and Tsallis entropies the following inequalities
hold.

1. For α < 1, hα(·) < Sα(·), (7)
2. For α > 1, hα(·) > Sα(·). (8)
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Proof. Suppose a =
∫
R f

α(x)dx (a > 0). Then, we have ln
∫
R f

α(x)dx <∫
R f

α(x)dx− 1. Now, let α < 1, then multiplying both sides of the relation
by 1

1−α , we get hα(·) < Sα(·). For α > 1, the relation (8) is obtained in a
similar way.

Now, by relations (5), (6), (7) and (8) the following inequalities between
Renyi, Shannon and Tsallis entropies are obtained.

1. For α < 1, h1(·) < hα(·) < Sα(·), (9)
2. For α > 1, h1(·) > hα(·) > Sα(·). (10)
Now, we obtain relation between Renyi, Shannon and Tallis entropy rates

for a stationary Gaussian process, using (9) and (10).
For a random vector (X1, . . . , Xn), the inequality (9) becomes:

h1(X1, . . . , Xn) < hα(X1, . . . , Xn) < Sα(X1, . . . , Xn),

and
1

n
h1(X1, . . . , Xn) <

1

n
hα(X1, . . . , Xn) <

1

n
Sα(X1, . . . , Xn)

Then, taking the limit of the entropy as n → ∞ and considering that the
rate of Renyi entropy (Golshani and Pasha, 2010) and the rate of Shannon
entropy (Kolmogorov, 1958; Ihara, 1993) exist for autoregressive-moving av-
erage processes, and using Proposition 5 for Tsallis entropy rate, we have:

h1(X) 6 hα(X) 6 Sα(X),

then
1

2
ln 2πe 6 1

2
ln 2πα

1
α−1 6 1

1− α

(√
(2π)1−α

α
− 1

)
.

Similarly, for α > 1, we get Sα(X) 6 hα(X) 6 h1(X). So

1

2
ln 2πe > 1

2
ln 2πα

1
α−1 > 1

1− α

(√
(2π)1−α

α
− 1

)
.

5 Conclusion
In this paper, we obtained the rate of Tsallis entropy for stationary Gaussian
processes. To do this, we showed that one can use the limit of conditional
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Tsallis entropy, similar to what was done for the cases of Renyi and Shannon
entropies. Then, we showed that the rate of Tsallis entropy is related to a
spectral density function, and then we proved that the rate of Tsallis entropy
is independent of their representations, for autoregressive and moving average
processes. Finally, we obtained the relation between Renyi, Shannon and
Tsallis entropy rates, for stationary Gaussian processes. Further work can
be done to obtain the rate of Tsallis entropy for Gaussian processes with
continuous time.
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