
 



34 New Estimators for Weibull Distribution Parameters ...

maximum likelihood estimator; U -statistic; Weibull distribution; weighted
least square; weighted maximum likelihood.

MSC 2010: 62F03, 62F30.

1 Introduction
The Weibull distribution is one of the most commonly used distributions
with a wide range of applications in some study fields such as: chemical
engineering (Chiang et al. (2004), Kuo-Chao et al. (2009), and Wood
et al. (2005)), ecology Stankova and Zlatanov (2010), electrical engineer-
ing (Genc et al. (2005) and Pascual (2006)), food industry Corzo et al.
(2008), mechanical engineering (Raghunathan et al. (2002) and Lavanya
et al. (2016)), telecommunications (Surendran et al. (2014) and Buller
et al. (2013)), wireless communications Noga and Palczynska (2007), eco-
nomic (Nadarajah and Kotz (2006) and Diaconu (2009)), civil engineering
(Muraleedharan et al. (2007) and Arenas et al. (2010)), and seismology
Hasumi et al. (2009). For further details on applications of the Weibull
distribution, we refer the readers to Meeker and Escobar (1998), Murthy et
al. (2004), and Dodson (2006). However, a comprehensive study has not
been performed to compare the estimators. All comparative studies, to the
best of our knowledge, have been devoted to compare the performance of
the MLE with the estimators of another class. For example, Kanter (2015)
made a comparison between least square estimators and the MLEs. The bias
of the MLE for the Weibull distribution has been studied by Ross (1996),
Watkins (1996) and Montanari et al. (1997). Seki and Yokoyama (1996)
made a comparison between the MLE and a bootstrap estimator. Zhang et
al. (2007) compared the estimation methods based on the Weibull probabil-
ity plot. Gebizlioglu et al. (2011) studied different estimation methods of
two-parameter Weibull distribution parameters. We also refer the readers to
Gebizlioglu et al. (2011), Genschel and Meeker (2010), Hossain and Zim-
mer (2003), Mohan et al. (2013), Teimouri et al. (2013), and references
therein. This is while estimators may have different appeals to different users.
For example, the maximum likelihood estimator (MLE) that has attractive
properties is biased and has not closed-form expression. This is while the
practitioners from some fields may looking for an estimator that is unbiased
or has closed-form expression. Also, user may prefer to use an estimator
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which works satisfactorily with sample of small size. Hence, a comparative
study is needed to compare the performance of the known estimators under
different situations. In this paper, we perform a comprehensive comparison
study between ten class of estimators including: the generalized least square
type 1 (GLS1), the generalized least square type 2 (GLS2), the L-moments
(LM), the Logarithmic moments (MLM), the maximum likelihood estima-
tion (MLE), the method of moments (MM), the percentile method (PM),
the U -statistic, the weighted least square (WLS), and weighted maximum
likelihood estimation (WMLE).

The structure of the paper is as follows. In Section 2, we derive U -statistic
for the shape and scale parameters of the Weibull distribution. The known
estimation methods are reviewed briefly in Section 3. Some comparisons will
be made in Section 4 through simulation between proposed estimator and
known methods in the literature. Furthermore, a real data application is
given in this section. We conclude the paper in Section 5.

2 U-Statistics for the Weibull Distribution Pa-
rameters

The probability density function (pdf) and cumulative distribution function
(cdf) of two-parameter Weibull distribution are, respectively, given by (Nel-
son, 1982; Johnson et al., 1994; Dodson, 2006):

fX(x) =
α

β

(
x

β

)α−1

exp

{
−
(
x

β

)α}
, (1)

FX(x) = 1− exp

{
−
(
x

β

)α}
, (2)

for x > 0, α > 0 and β > 0. Here, α and β are known as the shape and
scale parameters. In the following we give U -statistics for the shape and
scale parameters of the Weibull distribution. For this, a lemma given by
the following is necessary. Hereafter, we write W(α, β) to denote a Weibull
distribution with pdf given in (1).

Lemma 1. Suppose X1, X2
iid∼W(α, β). Then

min{X1, X2}
d
=2−

1
αX1. (3)
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Theorem 1. Let x1, x2, . . . , xn be observations from a random sample of size
n from Weibull distribution with the parameters α and β given by (1). For
k = 1, 2 let

Uk =

(
n

2

)−1 ∑
1≤i<j≤n

Hk(xi, xj),

where
H1(xi, xj) =

log xi + log xj
2 log 2

− logmin{xi, xj}
log 2

,

and

H2(xi, xj) =

(
1 +

φ(1)

log 2

)
log xi + log xj

2
− φ(1)

log 2
logmin{xi, xj},

with φ(1) = −0.57721566. Then U1 and U2 are U-statistics for 1/α and
log(β), respectively.

Proof: First by applying log-transformation to the both sides of (3), we
have

1

α
=

logX1 − logmin{X1, X2}
log 2

. (4)

Although equating the constant 1/α to a random variable in equation (4)
might actually be vague, but that is well-recognized procedure in the litera-
ture of the U -statistic to extract the kernel. Now, the right-hand side of (4)
can be used to construct a symmetric kernel as

H1(x1, x2) =
log x1 + log x2

2 log 2
− logmin{x1, x2}

log 2
. (5)

It is easy to see that E
(
H1(X1, X2)

)
= 1/α. To guarantee the asymptotic

normality of the introduced U -statistics for 1/α with kernel (5), it is neces-
sary to show that

Var
(
E
(
H1(X1, X2)

∣∣X1

))
<∞

For this, it suffices to show that Var
(
H1(X1, X2)

)
is finite. To begin, we note

that X,X1, X2 are iid random variables from W(α, β).
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Since min{X1, X2}
d
=2−

1
αX1, it follows that

Var(logX) = Var (logmin{X1, X2}) . (6)

Here, elementary statistical manipulations reveal that if we define X =
logmin{X1, X2}, Y = logX1, and Z = logX1 + logX2, then

Cov (logmin{X1, X2}, logX1 + logX2) = Cov (logX1, logX1 + logX2) .
(7)

Now, using (6), we can write

Var
(
H1(X1, X2)

)
=

Var logX
log2 2

+
Var logX
2 log2 2

−
Cov

(
logmin{X1, X2}, logX1 + logX2

)
log2 2

. (8)

Applying property (7) to the right-hand side of (8), we obtain

Var
(
H1(X1, X2)

)
≤ Var(logX)

2 log2 2
.

It is easy to check that Var(logX) = ψ(1, 1)/α2 where ψ(n, x) = ∂nφ(x)/∂xn

and φ(x) = ∂ log Γ(x)/∂x. The asymptotic normality of Uα follows since

Var
(
H1(X1, X2)

)
≤ ψ(1, 1)

2α2 log2 2
<∞.

On the other hand, it is not hard to check that E(logX) = log β+ φ(1)
α where

φ(1) = −0.5772157. Define H2(x1, x2) as

H2(x1, x2) =
log x1 + log x2

2
− φ(1)H1(x1, x2)

=
log x1 + log x2

2

(
1− φ(1)

log 2

)
+
φ(1)

log 2
logmin{x1, x2}. (9)

It is easy to see that E
(
H1(X1, X2)

)
= log β. Asymptotic normality of the

introduced U -statistics for log β with kernel (9) holds if we prove Var(E(H2

(X1, X2)
∣∣X1)) < ∞ or equivalently Var

(
H1(X1, X2)

)
< ∞. We eliminate

the proof since kernels H1(x1, x2) and H2(x1, x2) have similar structure.

J. Statist. Res. Iran 16 (2019): 33–57



38 New Estimators for Weibull Distribution Parameters ...

Remark 1. Estimators given in Theorem 1 are U -statistics for 1/α and
log β, respectively. Estimators of α and β are easily obtained using inverse
and exponential transforms, respectively.

3 Known Estimators for the Weibull Distribution

Here, we review briefly almost all of known estimation methods for the
Weibull distribution.

3.1 Maximum Likelihood Estimation (MLE)

There is no closed-form expression for MLEs of the Weibull distribution pa-
rameters. It is asymptotically normal and efficient for large sample sizes.
Many attempts have been made to compute or modify the MLEs of the
Weibull distribution parameters. Cohen and Whitten (1982) considered
a modified MLE involving complicated numerical computations. Dodson
(2006) derived the MLE for the shape parameter graphically. The MLE of
the shape parameter is computed as the root of the equation, see Norman et
al. (1994)

n

α
−

n∑
i=1

log xi − n log β +
n∑

i=1

(
xi
β

)α

log

(
xi
β

)
,

and the MLE of the scale parameter is given by

β̂MLE =

(∑n
i=1 x

α
i

n

) 1
α

.

It can be seen that β̂MLE depends on α and also that α̂MLE must be com-
puted numerically.

3.2 Weighted Maximum Likelihood (WMLE)

It is known that MLEs are generally biased. To reduce the bias rate in the
case of the Weibull distribution, the weighted maximum likelihood estimators
(WMLE) have been proposed in Jacquelin (1993). Suppose x1, x2, . . . , xn is
a random sample from cdf given in (2), then the WMLEs of the shape and
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scale parameters are given by

α̂WMLE = argmin
α

(
W2

α
+

1

n
log xi −

∑n
i=1 x

α
i log xi∑n

i=1 x
α
i

)2

,

β̂WMLE =

(
1

nW1

n∑
i=1

xαi

) 1
α

,

where the weights W1 and W2 are given by

W1 = − 1

n

n∑
i=1

log(1− F (Xi)),

W2 =

∑n
i=1 log

(
1− F (Xi)

)
log
(
− log(1− F (Xi))

)∑n
i=1 log(1− F (Xi))

− 1

n

n∑
i=1

log
(
− log(1−F (Xi))

)
.

Although the sampling distribution of the W1 is gamma with shape param-
eter n and scale parameter 1/n, but the sampling distribution of the W2 is
not known. In practice, both of random variables W1 and W2 are replaced
by their central quantities such as mean, median, or geometric mean. Here,
we use the median of W1 and W2 since they yield the best performance, see
Cousineau (2009). For this, in a comprehensive Monte Carlo simulation, we
derive the median of W1 and W2 for different levels of α (from 0.5 to 5 by
0.2) and small sample size n (including 5, 10, 15, 30, 50, 100, …, 200). We
note that as n tends to ∞, both WMLE and MLE approaches give the same
results.

3.3 Generalized and Weighted Least Square (GLS and WLS)

The parameter estimation using least square approach is common in the
statistical literature. For Pareto, log-logistic and Weibull distributions we
refer the readers to Kantar (2015), Hung (2001), Lu et al. (2004), Zhang
et al. (2008), Van Zyl and Schall (2012), and Zhang et al. (2007). Suppose
x(1) ≤ x(2) ≤ · · · ≤ x(n) are the ordered realizations fromWeibull distribution
with pdf given in (2). We can see that the following regression model holds.

y(i) = log β +
1

α
log
(
− log(1− F (x(i)))

)
, (10)

for i = 1, . . . , n where y(i) = log x(i). The quantity F (x(i)), in the right-hand
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side of regression model (10), is replaced by i
n+1 or i−0.3

n+0.4 , see Tiryakioglu
and Hudak (2007), Van Zyl and Schall (2012), and Kantar and Yildirim
(2015). Since the sample x(i) is ordered, the dependent variable y(i) is also
ordered. Therefore the variance of dependent variable is not of the form σ2I,
see Kantar (2015). To tackle this issue the generalized least square (GLS)
technique is proposed, see Engeman and Keefe (1982). The GLS estimate,
i.e., β̂GLS1 = (log β̂, 1/α̂)T is given by

β̂GLS1 =
(
XTV −1X

)
XTV −1Y, (11)

where Y = (log x(1), log x(2), . . . , log x(n))
T ,

X =


1 log

(
− log(1− F̂ (x(1)))

)
...

...
1 log

(
− log(1− F̂ (x(n)))

)
 ,

and

V =


v11 . . . v1n
...

...
...

vn1 . . . vnn

 ,

for

vij =
i

(n+ 1− i)

1

log(n+ 1− i)− log(n+ 1)

1

log(n+ 1− j)− log(n+ 1)
; i ≤ j.

The second type of GLS estimate, i.e.,

β̂GLS2 =
(
ZTV −1X

)
ZTV −1Y, (12)

can be constructed if we replace X with Z as

Z =


1 log

(
− log(1− F̂ (x(1)))

)
− 0.5− log(1−F̂ (x(1)))(

(1−F̂ (x(1))) log(1−F̂ (x(1)))
)2

...
...

1 log
(
− log(1− F̂ (x(n)))

)
− 0.5− log(1−F̂ (x(n)))(

(1−F̂ (x(n))) log(1−F̂ (x(n)))
)2

 .

© 2019, SRTC Iran



S. Sadani, K. Abdollahnezhad, M. Teimouri and V. Ranjbar 41

We note that β̂GLS2 = (log β̂, 1/α̂)T and F̂ (x(i)) = i
n+1 . The weighted least

square (WLS) estimate are also given by

β̂WLS =
(
XTW−1X

)
XTW−1Y, (13)

where β̂WLS = (log β̂, 1/α̂)T and W is a diagonal matrix whose entries are
v11, . . . , vnn, see Kantar (2015).

3.4 L-moment (LM)

The L-moments have their origin in works by Hosking (1990) and Elamir
and Seheult (2003). By equating the sample L-moment to the population
counterpart gives the L-moment estimate. The r-th L-moment of Weibull
distribution with pdf (1) is given by:

µLr =
β

r
Γ

(
1

α
+ 1

) r−1∑
k=0

(−1)kCr−1
k (r − k)Cr

r−k

r−k−1∑
j=0

Cr−k−1
j

(−1)j

(k + j + 1)1/α+1
,

where α > 0, β > 0, r = 1, 2, . . ., and Cn
i denotes the binomial coefficient

n!/(i!(n−i)!), see Hosking (1990). So the first and the second L-moments are
given by µL1 = βΓ (1/α+ 1) and µL2 = βΓ (1/α+ 1)

(
1− 2−1/α

)
, respectively.

The first two sample L-moments are:

mL
1 =

1

n

n∑
i=1

Xi:n = X,

and

mL
2 =

2

n(n− 1)

n∑
i=1

(i− 1)Xi:n −X.

Now, equating µL1 and µL2 with mL
1 and mL

2 , respectively, the L-moments of
α and β are obtained as:

α̂LM = − ln(2)

ln
(
1−mL

2 /m
L
1

) ,
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and

β̂LM =
mL

1

Γ (1/α̂LM + 1)
.

3.5 Method of Logarithmic Moment (MLM)

The log-moment estimates of the shape and scale parameters of Weibull
distribution with cdf (2) are given by (see Wayne (1982), Norman et al.
(1994), and Dodson (2006))

α̂MLM =

√
π2

6S2 , (14)

and

β̂MLM = exp
{
M1 − ψ(1)/α̂MLM

}
, (15)

where S2 and M1 are the sample variance and the mean of log-transformed
data, respectively. Also ψ(1) = −0.5772156. It can be shown that (14)
and (15) are both asymptotically unbiased and consistent, see Norman et al.
(1994).

3.6 Percentile Method (PM)

The quantile of a Weibull distribution with cdf (2) is

xp = β [− ln(1− p)]1/α ,

where 0 < p < 1, see Norman et al. (1994) and Dodson (2006). Using
p = 1 − exp(−1) ∼= 0.632, one can construct percentile-based estimators for
α and β as

α̂PM =

(
ln[− ln(1− p)]

ln (xp)− ln (x0.632)

)
, (16)

and

β̂PM = x1−exp(−1), (17)
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respectively, where 0 < xp < x0.632. The suggested values for p are 0.15 (see
Wang and Keats (1995)) and 0.31, see (Seki and Yokoyama (1996) and
Hassanein (1971)). Statistical tools show that percentile-based estimators
are, in general, asymptotically normal and unbiased, see Wayne (1982).

3.7 Method of Moments (MM)
Moment-based estimators of a given population are obtained by equating the
population moments to their sample counterparts and solving the resulting
equations. The moment-based estimators for the Weibull distribution suffers
from numerical computations, see Cran (1988). Also, these estimators are
not efficient. The r-th non-central moment for the Weibull distribution is
(Wayne (1982); Norman et al. (1994); Dodson (2006)):

µr = βrΓ (r/α+ 1) .

Equating the mean and variance (µ1 and µ2 − µ21) with the sample coun-
terparts (X and S2), the moment-based estimator of the shape parameter
α̂MM , is root of the equation

Γ(1 + 2/α)

Γ2(1 + 1/α)
+
S2

X
− 1 = 0,

and the moment-based estimator of the scale parameter is

β̂MM =
X

Γ (1/α̂MM + 1)
.

4 Performance Comparisons
This section has two parts. In the first part, we compare the performances
of estimators introduced in Section 2 and 3 through simulation. Second part
devoted to an illustration in which all estimators are applied to a set of real
data.

4.1 Simulation Study
Here, we perform a Monte Carlo simulation to compare the performance of
the U -statistic, MLE, WMLE, GLS1, GLS2, WLS, LM, MLM, PM, and MM.
For this aim, we compare the bias and root of mean squared error (RMSE).
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For computing the bias we adopt small sizes of sample including 5, 10, 30,
and two levels for shape and scale parameters as: (0.5, 0.5), (2.5, 0.5), (0.5,
2.5), and (2.5, 2.5). The results after computing the bias are given in Tables
1-2. Also the bias of U -statistic, MLE, GLS1, GLS2, WLS, and LM are given
for large sizes of sample including 1000 and 4000. The corresponding results
are given in Tables 3-4 for shape and scale parameters, respectively.

For computing the RMSE, we choose the sample sizes as: 5, 10, 15, 30,
50, 100, and 200. Comparisons are performed for different levels of the shape
(α=0.5, 1, and 2.5) and the scale (β=0.5, 2, and 5) parameters. We used
a 7-color scheme to distinguish between competitors through Figures 1-2 as
follows. The brown for the U -statistic, green for the MLE, purple for the
WMLE, dashed red for the GLS1, black for the GLS2, blue for the WLS,
dashed purple for the MLM, dotted purple for the PM, solid red for the
MM, and yellow solid curve for LM. The results for computing the RMSE
are given in Figures 1-2.

4.1.1 Comparison Results for the Bias

According to the bias of the shape parameter estimator α̂ for small sizes 5,
10, and 30, the following conclusions can be made from Table 1.

1. GLS2 , WLS, and WMLE give the best performances for n = 5, n = 10,
and n = 30, respectively.

2. WMLE shows the best performance next to the WLS and GLS1.

3. PM gives the worst performance.

4. When α is small (say α = 0.5), the MM gives the worst performance
next to the GLS2.

5. When α is large (say α = 2.5) and n ≥ 15, the GLS2 gives the worst
performance.

6. WMLE outperforms the LM.

7. WMLE and U -statistic outperform the MLE.

8. U -statistic shows better performance than the MLE, MLM, MM, and
PM.
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The following observations can be made from Table 2 for bias of the scale
parameter estimator β̂ for small sizes 5, 10, and 30.

1. WMLE and MLE give almost the same performances.

2. When α is small (say α = 0.5), the MM gives the worst performance.

3. When α is small, the LM gives the best performance.

4. The GLS2, GLS1, and WLS show the same performances.

5. MLM outperforms GLS2, GLS1, and WLS.

6. When α is large (say α = 2.5), the PM shows the worst performance.

7. The GLS2, GLS1, and WLS outperforms the U -statistic for n = 5, 10.

The following observations can be made from Tables 3-4 for bias of the shape
parameter estimator β̂ for large sizes 1000 and 4000.

1. U -statistic gives the best performance for estimating the shape and
scale parameters.

2. GLS1 shows the worst performance for estimating the shape and scale
parameters.

We note that for bias analysis when sample sizes are large, the MLM, PM,
and MM have been eliminated by competitions since the show weak per-
formances. Also, since MLE and WMLE show the same performances, the
WMLE has been removed by competitions.

4.1.2 Comparison Results for RMSE

The following observations can be made from Figure 1 for RMSE of the shape
parameter estimator α̂.

1. The PM gives the worst performance.

2. When n = 5 the GLS2 gives the best performance.

3. When n = 5 the GLS2 gives the best performance.

4. The WGLS gives the best performance next to the GLS1.

5. The WMLE outperforms the LM and U -statistic.
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6. The MLM shows better performance than the MLE for sample size
(say n ≤ 10).

The following observations can be made from Figure 2 for RMSE of the scale
parameter estimator β̂.

1. The PM gives the worst performance.

2. When α is small (say α ≤ 0.5), the MM gives the worst performance.

3. When α is not small (say α ≥ 1), the PM gives the worst performance.

4. When α is small (say α ≤ 0.5) and n ≤ 15, the LM gives the best
performance.

4.2 Real Data Illustration
Here, we apply all reviewed methods introduced in Sections 2 and 3 to a set
of real data involving by lifetimes in years reported by (Glick , 1978, p. 17).
Data are shown in Table 5. Moreover, using a bootstrap method by B=10000
iterations the standard errors of estimators computed. To implement these
techniques, programs have been written in R environment, see Team (2014).
In order to compare the performance of estimators presented in the Section
2 and 3, we employed the Kolmogorov-Smirnov (KS) and Cramer-Von Mises
(CVM) distances which are given by

KS = max
1≤i≤n

max

{
i

n
− FX

(
x(i)
)
, FX

(
x(i)
)
− i− 1

n

}
,

and
CVM =

1

12n
+

n∑
i=1

[
2i− 1

2n
− FX

(
x(i)
)]2

,

where n is the sample size, x(i); for i = 1 . . . , n, is the i-th ordered observed
value and FX(.) is the distribution function of two-parameter Weibull distri-
bution defined in (2). The following observations can be made from Table
6.

1. The WLS shows the best performance in the sense of both criteria KS
and CVM.

2. The MLM shows the best performance in the sense of CVM criterion
next to the WLS.
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3. The PM shows the best performance in the sense of KS criterion next
to the WLS.

5 Conclusion
We have introduced U -statistics for shape and scale parameters of two-
parameter Weibull distribution. Asymptotic normality and consistency of
the new estimators have been proved. Furthermore, a comprehensive Monte
Carlo study have been carried out to compare the performance of the known
estimators of the two-parameter Weibull distribution parameters. A pointed
out by one of referees since structure of estimators studied in this work de-
pends on both of the shape and scale parameters, so they are statistically
dependent. The degree of dependence between estimators of the shape and
scale parameters under each method can be considered as a possible future
work. On the other hand, different estimators may appeal different users for
different levels of sample size and parameters levels, a list of comparisons
have been made in the paper for choosing desired estimator. Many facts can
be concluded from this study, among them our results are the followings.

• for small sizes of samples the weighted least square (WLS) approach
gives the best performance in the sense of bias.

• shape estimator based on method of weighted least square (WLS) gives
the best performance root of mean squared error (RMSE).

• shape estimator based on method of percentile gives the worst perfor-
mance in terms of RMSE.

• shape and scale estimators based on U -statistic show the best perfor-
mances in the sense of bias for large sample sizes.

• shape and scale estimators based on generalized least square type-I
(GLS1) approach show the worst performances in the sense of bias for
large sample sizes.
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Table 1. Bias of shape parameter estimators for samples of small size.
n=5

parameters level
Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.346 0.383 1.890 1.415
MLE 0.422 0.473 2.453 1.813
WMLE 0.299 0.340 1.764 1.309
GLS1 0.266 0.292 1.420 1.106
GLS2 0.249 0.255 1.261 1.025
WLS 0.252 0.283 1.449 1.082
LM 0.331 0.359 1.798 1.353
MLM 0.405 0.443 2.203 1.645
PM 1.199 1.699 8.597 7.132
MM 0.450 0.476 1.971 1.452

n=10
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.181 0.189 0.865 0.713
MLE 0.193 0.195 0.914 0.776
WMLE 0.161 0.162 0.756 0.636
GLS1 0.159 0.164 0.765 0.608
GLS2 0.196 0.195 0.966 0.749
WLS 0.148 0.146 0.697 0.572
LM 0.193 0.191 0.781 0.649
MLM 0.205 0.216 0.999 0.817
PM 0.546 0.553 2.491 2.334
MM 0.279 0.278 0.806 0.664

n=30
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.071 0.074 0.383 0.301
MLE 0.078 0.079 0.410 0.332
WMLE 0.074 0.073 0.379 0.309
GLS1 0.085 0.084 0.425 0.342
GLS2 0.121 0.119 0.588 0.468
WLS 0.077 0.076 0.385 0.311
LM 0.099 0.110 0.393 0.315
MLM 0.095 0.096 0.493 0.400
PM 0.184 0.191 1.045 0.867
MM 0.150 0.149 0.386 0.313
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Table 2. Bias of scale parameter estimators for samples of small size.
n=5

parameters level
Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.816 2.717 0.094 0.481
MLE 0.674 2.318 0.091 0.460
WMLE 0.673 2.315 0.091 0.459
GLS1 0.809 2.686 0.094 0.481
GLS2 0.795 2.641 0.093 0.477
WLS 0.806 2.670 0.094 0.479
LM 0.544 1.909 0.093 0.469
MLM 0.723 2.431 0.092 0.468
PM 0.903 2.943 0.099 0.508
MM 0.927 2.983 0.092 0.463

n=10
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.424 1.752 0.067 0.337
MLE 0.389 1.608 0.066 0.329
WMLE 0.387 1.596 0.066 0.329
GLS1 0.385 1.652 0.067 0.337
GLS2 0.421 1.744 0.067 0.336
WLS 0.423 1.752 0.067 0.338
LM 0.349 1.455 0.067 0.332
MLM 0.409 1.663 0.067 0.335
PM 0.485 1.948 0.077 0.393
MM 0.513 2.129 0.066 0.331

n=30
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
U -Statistic 0.215 0.866 0.038 0.186
MLE 0.207 0.841 0.037 0.187
WMLE 0.207 0.842 0.037 0.188
GLS1 0.214 0.869 0.038 0.191
GLS2 0.215 0.869 0.038 0.191
WLS 0.215 0.874 0.038 0.191
LM 0.201 0.830 0.037 0.188
MLM 0.218 0.857 0.038 0.195
PM 0.257 1.060 0.045 0.227
MM 0.284 1.110 0.037 0.202
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Table 3. Bias of shape parameter estimators for samples of large size.
n=1000

parameters level
Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
GLS1 0.005193 0.003696 0.018966 0.008460
WLS 0.005025 0.003351 0.017895 0.006642
GLS2 -0.005167 -0.002230 -0.016367 -0.007867
MLE -0.004958 -0.002026 -0.017401 -0.005958
LM 0.004229 0.002091 0.016958 0.005620
U-Statistic 0.003600 0.001065 0.013052 0.003600

n=4000
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
GLS1 0.002892 0.976e-03 0.009939 0.003492
WLS 0.002632 0.764e-03 0.009614 0.002632
GLS2 -0.002260 -6.088e-04 -0.009609 -0.002260
MLE -0.002372 -9.705e-04 -0.009305 -0.002372
LM 0.001498 -7.164e-04 -0.007535 0.002498
U-Statistic 0.001253 2.018e-04 -0.004859 0.001253

Table 4. Bias of scale parameter estimators for samples of large size.
n=1000

parameters level
Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
GLS1 0.006450 0.013542 0.006873 -0.014509
WLS 0.004087 0.011946 0.006442 0.013873
GLS2 0.004891 0.011840 0.005900 0.011489
MLE 0.005883 0.011700 -0.005236 0.010988
LM 0.006123 0.010598 -0.006468 0.012319
U-Statistic 0.003323 0.007526 0.005378 0.009353

n=4000
parameters level

Method (α = 0.5, β = 0.5) (α = 0.5, β = 2.5) (α = 2.5, β = 0.5) (α = 2.5, β = 2.5)
GLS1 0.001854 0.005237 1.968e-03 0.002354
WLS 0.001263 0.003971 1.879e-03 0.001263
GLS2 0.001495 0.003879 1.807e-03 0.001495
MLE 0.001382 0.004028 1.748e-03 0.001382
LM 0.001545 -0.003890 1.651e-03 0.001845
U-Statistic 0.000552 -0.002518 1.029e-03 0.000552
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Table 5. Lifetime data (in year)
30.20 36.55 25.11 39.35 27.57 25.91 31.50 29.24 18.39 16.65 21.85 24.88
31.61 18.74 19.63 28.98 11.10 21.66 22.41 26.04 25.07 23.48 28.21 25.21
25.12 27.76 23.47 23.51 24.39 21.93 37.63 20.32 28.17 24.66 30.13 21.42
17.21 19.98 33.09 16.04 17.96 19.57 22.91 25.69 23.47 16.91 27.20 27.23

Table 6. Estimation results and their standard errors (in parentheses) after fitting two-
parameter Weibull distribution to the lifetime data.

Estimated parameters goodness-of-fit measures
Method α̂ β̂ KS CVM
U -statistic 5.1575(0.6814) 26.8644(0.7876) 0.0934 0.0591
MLE 4.5922( 0.5561) 26.9452(0.8952) 0.0920 0.0713
WMLE 4.5141(0.5314) 26.9370(0.9082) 0.0906 0.0744
GLS1 4.7548(0.6105) 26.9926(0.8685) 0.0971 0.0721
GLS2 4.3035(0.4892) 26.9788(0.9554) 0.0904 0.0926
WLS 4.7099(0.5658) 26.6979(0.8861) 0.0777 0.0482
LM 4.9512(0.6229) 26.9055(0.8309) 0.0939 0.0609
MLM 5.3119(0.8072) 26.7771(0.7787) 0.0889 0.0529
PM 5.9767(1.6019) 25.8461(0.8132) 0.0867 0.0622
MM 4.9150(0.6140) 26.9169(0.8413) 0.0942 0.0621
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Figure 1. RMSE of the shape parameter estimator, α̂ for different levels of α and β under
small sample size scenario, i.e., n =5, 10, 15, 30, 50, 100, and 200. The used color scheme
are: the black solid curve for the GLS2, blue solid curve for the WLS, brown solid curve for
the U -statistic, green solid curve for the MLE, solid red curve for the MM, dashed red curve
for the GLS1, purple solid curve for the WMLE, dotted purple curve for the PM, dashed
purple curve for the MLM, and yellow solid curve for LM.
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Figure 2. RMSE of the scale parameter estimator, β̂ for different levels of α and β under
small sample size scenario, i.e., n =5, 10, 15, 30, 50, 100, and 200. The used color scheme
are: the black solid curve for the GLS2, blue solid curve for the WLS, brown solid curve for
the U -statistic, green solid curve for the MLE, solid red curve for the MM, dashed red curve
for the GLS1, purple solid curve for the WMLE, dotted purple curve for the PM, dashed
purple curve for the MLM, and yellow solid curve for LM.
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