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Abstract. Estimation procedures for nonstationary Markov chainsappear to be relatively sparse. This work introduces empiricalBayes estimators for the transition probability matrix of a �nitenonstationary Markov chain. The data are assumed to be of apanel study type in which each data set consists of a sequenceof observations on N > 2 independent and identically distributedchains recorded collectively.Keywords. Bayes estimates; empirical Bayes estimates; naturalconjugate priors; nonstationary Markov chains.1 IntroductionMarkov chains have been with us for a long time and provided the transi-tion probability matrix (t.p.m.) and the initial probability vector are known,a wealth of results can be found. However, there are relatively few resultsavailable when it comes to estimating that t.p.m.A basic study in which maximum likelihood estimates are obtained is pro-vided by Anderson and Goodman (1957). However, there are many situationswhen the available data are ideally suited to the use of empirical Bayes proce-dures. Typically, the "experimenter" has at his disposal (n + 1), say, sets of� Corresponding author.
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87 Empirical Bayes Estimation in Nonstationary Markov chainsdata each being a sequence of observations from a Markov chain process. These(n+ 1) data sets may occur concurrently or sequentially. By using the sets of"past" data, estimates of unknown prior parameters can be found. These inconjunction with the "current" data set allow us to obtain the so-called empir-ical Bayes estimates for the t.p.m.Preston (1971) has brie
y considered this problem for a stationary two-stateMarkov chain. We propose here to derive some empirical Bayes estimators forthe more general case of s > 2 states and for a non-stationary Markov chain.The related questions pertaining to the properties of such estimators are beingdeferred at this time.There are numerous situations, especially in the medical and social sciences,where the t.p.m. is not constant over time. For example, consider a processregarding changes in people's behavior when a de�nite decision about someissue (such as voting on a proposal or electing a candidate) must be made by adue date. It seems more realistic that the t.p.m. of the penultimate week willbe di�erent from those of earlier weeks.There are examples in other areas, too. Suppose one is looking for anobject in a place (such as a document in a �le), which is certain to be presentthere. Assume initially that the searcher has a certain probability of �ndingthe object on each search, and that he continues to search until he �nds it.Now, consider a tiring search where the searcher tires as the search progresses.The same process might serve as a model for a student trying to learn butbecoming discouraged, Howard (1971). In these cases, it seems reasonable toassume that the t.p.m. will change over time.A concrete example of this model is the people's intention to vote for variouspresidential candidates. If one monitors the intention of people in variousgeographical regions and/or ethnic groups as the candidates' campaign go onthen clearly one has a set of independent processes evolving which culminateto the �nal election day.Estimation for Markov Processes, specially for stationary ones, has beentreated by many authors; Billinglsley (1961), Basawa and Prakaso Rao (1980),Bhat and Miller (2002), Billard and Meshkani (1992), Meshkani and Billard(1995) are among the others. Works on non-stationary processes are rare,specially from Bayesian perspective.We treat this problem in the context of panel studies. By "panel study",we mean that each data set consists of a sequence of observations on N > 2 in-dependent and identically distributed chains recorded collectively. No speci�cfunctional relation between the t.p.m., �(t), will be assumed. The only stipu-lation will be that if observations are made at each time t 2 � = f1; : : : ; Tg,�(t) 6= � for all t 2 �;20 c
(2005) J. Stat. Res. Iran 2
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M. R. Meshkani and L. Billard 86and that �(t), t 2 � , are independently distributed.The basic probability results are obtained in Section 2. From these, weare able to derive the Bayes estimate for �(t), given in Section 3. For this,the natural conjugate priors are used. Then, the empirical Bayes estimatesare derived in Section 4. Section 5 presents the optimality properties of theestimators, providing the asymptotic distributions.2 Theoretical Moments2.1 Some De�nitions and AssumptionsLet � = f1; : : : ; Tg and �0 = f0g [ � . Let fX(t); t 2 �0g be a simple Markovchain of states with transition probability matrix (t.p.m.) �(t) with elements�jk(t); j; k 2 S for S = f1; : : : ; sg. We shall refer to the data sets i 2 N , forN = f1; � � � ; ng as the "past data" and the set i = n+1 as the "current data".Let N1 = fn+ 1g [N .De�nition 1 The frequency count vector (f.c.v.), G(t), is the vector whoseelements, Gj(t); j 2 S, are the number of individuals in state j at time t; t 2 �0.For reasons that will become clear later, at t = 1, we need to have G 6= 0.This is not a con�ning restriction as this is usually the case in panel studieswhere N is generally large and the initial distribution � = (�j); j 2 S, is suchthat �j 6= 0.De�nition 2 The frequency count matrix (f.c.m.), F(t), is the matrix whoseelements, Fjk(t); j; k 2 S, are the number of individuals moving from state jat time t� 1 to state k at time t.Note there will be a f.c.v. Gi(t) and f.c.m. Fi(t), for each i 2 N1. Ulti-mately we are interested in some moments of the Fi(t). Hence, it is su�cientto consider the properties of Fn+1(t) � F(t).From Anderson and Goodman (1957), it follows that the conditional distri-bution of F(t) for a given t.p.m. �(t) and initial f.c.v. G(0), isPfF(t)j�(t);G(0); t 2 �g = A0fF(t)g �t2� �j;k2S �Fjk(t)jk(t) ; (1)where A0fF(t)g = �t2� ��j2S Fj+(t)!�k2SFjk(t)!� ;c
(2005) J. Stat. Res. Iran 2 21
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85 Empirical Bayes Estimation in Nonstationary Markov chainswith Fj+(t) = �k2S Fjk(t):The distribution of �(t) will be assumed to follow the natural conjugateprior, viz., the matrix beta distribution MB[p(t)]; t 2 � . That is,qf�(t)g = �j2S "�(pj+(t))�k2S (�pjk(t)�1jk (t)�(pjk(t)) )# ; (2)with pj+(t) =Xk2S pjk(t):Throughout, we shall use independent priors for �(t); t 2 � . The reasonfor this assumption is twofold. First, we do not have a clear idea about thevariation of �(t) in t to incorporate it appropriately in the model. Secondly, itprovides mathematical tractability in this initial attempt of the subject.2.2 Moments of F (t) and Some Functions of itNow, from the de�nitions of G(t) and F(t), we can readily see thatG(t� 1) = F(t) � 1; (3)G(t) = F0(t) � 1; (4)10G(t) = 10F(t)1 = N; t 2 �: (5)These relationships suggest it is more practical to establish a recursive formulain t for EfF(t)g. Let L(t) = Ef�(t)g; t 2 �; (6)with elements ljk(t) = pjk(t)pj+(t) ; j; k 2 S:let L(u; �), for u; � 2 � , be a matrix with elementsljk(u; �) = 8><>:(j; k)th element of ��t=uL(t); u < �ljk(�); u = ��jk; u > �, (7)where �jk is the Kronecker's delta.Let �(t) = EfF(t)jG(0)g; t 2 �; (8)22 c
(2005) J. Stat. Res. Iran 2
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M. R. Meshkani and L. Billard 84with elements �jk(t) = EfFjk(t)jG(0)g; k 2 S;and let 	(t) = EfG(0)g; t 2 �; (9)where the elements  j(t) of the vector 	(t) are given by j(t) = (Gj(0); t = 1G0(0)Pk2S L:k(1)lkj(2; t� 1); t > 2;where L:k(t) is the kth column of L(t).Later in the process of estimation of the hyperparameters of the prior dis-tribution, we shall need some explicit equations for the moments of F(t).Taking expectation of (8) leads to�(t) = diagf j(t� 1)gL(t); t 2 �which is too involved to be useful in our estimation procedure. We shall usethe following simpler expressions given in Theorem (1) below.Let us �rst de�neM(t) = diagfF�1j+ (t)g �F(t); t 2 �; (10)with elements Mjk(t) = Fjk(t)Fj+(t) ; j; k 2 S:we note that since each f.c.v. G(t� 1) is assumed to be non-zero, Fj+(t) 6= 0for all j 2 S. Hence, (10) is well-de�ned. We also de�ne the matrix Zj(t) withelements Zj;kh(t) = Fjk(t)fFjh(t)� �khgfFj+(t)� 1g j; k; h 2 S; t 2 �: (11)Theorem 1 Let M(t) = fMjk(t)g; t 2 �; be de�ned as in (10). Then, forj; k; g; h 2 S, EfMjk(t)g = ljk(t); t 2 �; (12)andcovfMjk(t);Mgh(t)g = �jg � pjk(t)f�khpj+(t)� pjh(t)gp2j+(t)fpj+(t) + 1g [1 +EfG�1j (t� 1)g]:(13)c
(2005) J. Stat. Res. Iran 2 23
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83 Empirical Bayes Estimation in Nonstationary Markov chainsProof. We have for j; k 2 S; t 2 �;EfMjk(t)g = E2 �E1� Fjk(t)Fj+(t)jGj(t� 1)��= E2f�jk(t)g = ljk(t);by de�nition (6) giving the required result. Here, the subscript 1 indicates theexpectations is for a given �(t) and 2 means the expectation is taken withrespect to the distribution of �(t).For the conditional covariance we have,cov1fMjk(t);Mgh(t)g = E1� Fjk(t)Gj(t� 1)� �jk(t) � Fgh(t)Gg(t� 1)� �gh(t)� : (14)when j = g, (14) becomescov1fMjk(t);Mjh(t)g = �jk(t)f�kh � �jh(t)gEfG�1j (t� 1)j�(u); u 6 t� 1g:Thus, the result (13) for j = g follows. When j 6= g, (14) becomesE1[G�1j (t� 1)G�1g (t� 1)E1f(Fjk(t)�Gj(t� 1)�jk(t))� (Fgh(t)�Gg(t� 1)�gh(t))jGj(t� 1)Gg(t� 1)g]= E1[G�1(t� 1)G�1g (t� 1):E1fFjk(t)�Gj(t� 1)�jk(t)jGj(t� 1)g�E1fFgh(t)�Gg(t� 1)�gh(t)jGg(t� 1)g]:Clearly, this is zero. Also,cov2[E1fMjk(t)g; E1fMgh(t)g] = cov2f�jk(t);�gh(t)g = 0; j 6= gHence, the required result follows.3 Bayes Estimate of �3.1 The Loss FunctionAs is usual, we shall assume an squared error loss function for the estima-tion of �(t) by ~�(t) = f~�jk(t)g; j; k 2 S. Following DeGroot (1970), thecorresponding loss function for the matrix �(t) is given byLf ~�(t)g = Xj;k2Sf~�jk(t)� �jk(t)g2:It can be shown that Lf�(t); ~�(t)g is minimized when each �jk(t); j; k 2 S,achieves least possible risk. Thus, the Bayes estimate for each �jk(t); j; k 2 S,will give us the Bayes estimate for �(t). However, the Bayes estimate of �(t)relative to the squared error loss function is just the posterior mean of �(t).24 c
(2005) J. Stat. Res. Iran 2
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M. R. Meshkani and L. Billard 823.2 The Bayes EstimateTheorem 2 Let F(t) be the f.c.m. of a collection of i.i.d. non-stationaryMarkov chains at time t. Let �(t) have a MBfp(t)g prior distribution inde-pendent of �(u); u 6= t. Then the posterior distribution of �(t) given F(t) isa MBfF(t) + p(t)g:Proof. From Anderson and Goodman (1957), we have, for each t 2 � ,q�f�(t)jF(t);G(t � 1)g = � Bfp(t)gBfp(t) +F(t)g� �j;k2S �Fjk(t)+pjk(t)�1jk (t)�(t) 2 
S ; F(t) 2 F (t);where Bfp(t)g = �j2S 24 �fpj + (t)g�k2S �fpjk(t)g35and F (t) is the set of all matrixes F(t) satisfying (3), (4) and (5).Since the righthand side does not depend on G(t � 1), the desired resultfollows readily.Theorem 3 Let F (t) be the f.c.m. of a collection of N i.i.d. non-stationaryMarkov chains at time t 2 � . Let �(t) have a MBfp(t)g prior distribution.For an initial f.c.v. G(0), the Bayes estimate of �(t) relative to the squarederror loss function is�B(t) = �BfF(t);p(t)g = f�B;jk(t)g (15)where �B;jk(t) = Fjk(t) + pjk(t)Fj+(t) + pj+(t) ; j; k 2 S:Proof. Since we only need to �nd the posterior mean of each �jk(t); j; k 2 S,the result follows immediately from the properties of MBfF(t) + p(t)g.Anderson and Goodman (1957) gave the maximum likelihood estimate of�jk(t) as Fjk(t)Fj+(t) j; k 2 S. Thus the Bayes estimate of �(t) is a convex combi-nation of the maximum likelihood estimate and Ef�(t)g.The posterior covariance of �jk(t) and �j0k0(t) is obtained ascovf�jk(t);�j0k0(t)jF(t)g =c
(2005) J. Stat. Res. Iran 2 25
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81 Empirical Bayes Estimation in Nonstationary Markov chains( [Fjk(t)+pjk(t)]f�kk0 [Fj+(t)+pj+(t)]�[Fj0k0 (t)+pj0k0 (t)]g[Fj+(t)+pj+(t)]2[Fj+(t)+pj+(t)+1] j = j0; k; k0 2 S0 j 6= j0; k; k0 2 S (16)where �kk0 is the Kronecker's delta.4 Empirical Bayes Estimate of �(t)4.1 PreliminariesIf we knew the value of p(t), then we would use (15) as the best estimate of�(t) and incur the least possible risk relative to the squared error loss function.Not knowing p(t), we shall estimate it from the "past data" and substitute itin (15). We shall use the method of moments to estimate p(t).We recall that the availability of fFi(t) : i 2 Ng, a set of realizations of ni.i.d. random matrices is assumed. For each t 2 � , the p.m.f. of F(t) containss2 parameters, namely, elements of p(t). In the following subsection, we givea procedure to estimate them from fFi(t) : i 2 Ng.4.2 Method of moments estimate of p(t)We may rewrite (12) and (13) aspjk(t)pj+(t) = EfMjk(t)g; j; k 2 S (17)and pj+(t)[EfZj;kh(t)g �EfMjk(t)g � EfMjk(t)g]= �khEfMjk(t)g �EfZj;kh(t)g; j 2 S: (18)Since (17) is actually s(s� 1) independent equations, we need (18) to furnishthe remaining s equations.We introduce the matrices �j(t) = f
j;kh(t)g and �j(t) = f�j;kh(t)g wherethe elements 
j;kh(t) and �j;kh(t) are de�ned for j; k; h 2 S; t 2 � , by
j;kh(t) = EfZj;kh(t)g �EfMjk(t)g:EfMjk(t)g; (19)�j;kh(t) = �khEfMjk(t)g � EfZj;kh(t)g; (20)respectively.Since Xh2S 
j;kh(t) =Xh2S �j;kh(t) = 0; (21)26 c
(2005) J. Stat. Res. Iran 2
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M. R. Meshkani and L. Billard 80�(t) and �(t) are singular. Let ��j (t) and ��j (t) denote the matrices of the �rst(s� 1) rows and columns of �j(t) and �j(t), respectively.Then, pj+(t) = � j��j (t)jj��j (t)j� 1(s�1) ; j 2 S (22)Now, we de�ne the statistics, for j; k; h 2 S; t 2 � ,Cj;kh(t) = Zj;kh(t)�Mjk(t) �M jh(t);and dj;kh(t) = �khMjk(t)� Zj;kh(t);as (k; h)th elements of Cj(t) and Dj(t), respectively where � has the samemeaning as in (22). The system of equations which provides the estimates ofpjk(t), denoted by rjk(t), for each t 2 � , isrj+(t) = ( jD�j (t)jjC�j (t)j) 1(s�1) ; j 2 S; (23)and rjk(t) = rj+(t)M jk(t); j; k 2 S: (24)The EB estimate of �(t) obtained by the method of moments is the matrix�EB(t) whose elements �EB;jk(t); j; k 2 S, are given by�EB;jk(t) = Fjk(t) + rjk(t)Fj+(t) + �j+(t) :We note �EB(t) may also be written in matrix notation as�EB(t) = diag[fFj+(t) + rj+(t)g�1]fF(t) +R(t)g; (25)where R(t) has elements rjk(t); j; k 2 S:4.3 Maximum Likelihood Estimate of p(t)The joint p.m.f. of F(t); t 2 � , is derived from (1) by integrating it with respectto the joint distribution of �(t); t 2 � .That is, pfF(t)jG(0); t 2 �g = A0fF(t)gB0fp(t);F(t)g; (26)c
(2005) J. Stat. Res. Iran 2 27
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79 Empirical Bayes Estimation in Nonstationary Markov chainswhereB0fp(t);F(t)g = �t2��j2S � �fpj+(t)g�k2S�fpjk(t) + Fjk(t)g�fpj+(t) + Fj+(t)g�k2S�fpjk(t)g� :Since A0fF (t)g is free of pjk(t), then L[fp(t)jF(t)g; t 2 � ], the likelihoodof Fi(t); i 2 N and t 2 � , is proportional to B0fp(t);F(t)g.However, we can show thatL[fp(t)jF(t)g; t 2 � ] = �j2SL[fpj+(t)jFj+(t)g; t 2 � ];and that it su�ces to maximize L[fpj+(t)jFj+(t)g; t 2 � ] for each j 2 S.Details of this maximization can be found in Meshkani (1978).Let the �nal solution of the maximization problem be ap(t). Then, we have:The EB estimate of �(t) obtained by the method of maximum likelihoodis the matrix a�EB(t) whose elements a�EB;jk(t); j; k 2 S, are given bya�EB;jk(t) = Fjk(t) + apjk(t)Fj+(t) + pj+(t) ; j; k 2 S: (27)The posterior variance corresponding to (16) iscovf�jk(t);�j0k0(t)jF(t)g =( [Fjk(t)+p̂jk(t)][�kk0 (Fj+(t)+p̂j+(t)]�[Fj0k0 (t)+p̂j0k0 (t)][Fj+(t)+p̂j+(t)]2[Fj+(t)+p̂j+(t)+1] j = j0; k; k0 2 S0 j 6= j0; k; k0 2 S (28)5 Optimality Properties of the EB EstimatorsThe EB estimators (27) and their covariance estimate (28) are continuousfunctions of the moment estimators of hyperparameters p̂jk(t); j; k 2 S.Since moment estimators are consistent, i.e. p̂jk(t) p! pjk(t) by straight-forward arguments we can claim that �̂EB;jk(t) p! �B(t). That is, the EBestimators (27) are asymptotically optimal.The same argument applies to (28). With regard to the distribution of EBestimators (27), we note that, if one ab initio uses the Dirichlet prior withhyper parameters p̂jk(t), then the posterior distribution of �̂EB(t) turns outto be a MBfF(t) + p̂(t)g in the spirit of theorem 2.However, one can appeal to the asymptotic properties of p̂(t) and state thefollowing result.28 c
(2005) J. Stat. Res. Iran 2
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M. R. Meshkani and L. Billard 78Here, again we are dealing with continuous functions of various samplemoments of Fjk(t). Appealing to a generalized version of the central limittheorem followed by the �-method, Meshkani (1978, chapter 4) has shown thatTheorem 4 Let �EB(t) be an EB estimator of �(t), obtained by the methodof moments, given in (27), then, each row of �EB(t) is asymptotically multi-variate normal, i.e.,vec�0EB(t) � Nfve�0B(t); n�1X̂R(t)cg (29)where X̂R(t) = diag( r2j+(t)(rj+(t) + Fj+(t))2 � P̂jj(t))and P̂jj(t) is the sample covariance of jth row ofM(t) = diagfF�1j+ (t)gt2�F(t).ConclusionsWe have obtained Bayes and empirical Bayes estimators for the t.p.m. of anonstationary �nite Markov chain. This is just a �rst step in this direction.Properties of these estimators, as well as asymptotic properties have been con-sidered. The asymptotic normal distribution has been derived.It would also be of interest to consider the situation f a single chain asdistinct from the panel study considered here. A di�erence in the distributionsof the frequency counts F(t) necessitates that this case be considered separately.ReferencesAnderson, T.W.; Goodman, L.A. (1957). Statistical inference about Markov chains. Ann.Math. Statist. 28, 89-110.Basawa, I.V.; Prakasa Rao, B.L.S. (1980). Statistical Inference for Stochastic Processes.Academic Press, New York.Bhat, U.N.; Miller, G.K. (2002). Elements of Applied Stochastic Processes 3rd ed. Wiley,New York.Billard, L.; Meshkani, M.R. (1992). Empirical Bayes estimation for a �nite Markov Chain.Biometrika, 79, 185-193.c
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