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Abstract. Probabilistic properties of Cox processes of relevance
for statistical modelling and inference are studied. Particularly, we
study the most important classes of Cox processes, including log
Gaussian Cox processes, shot noise Cox processes, and permanent
Cox processes. We consider moment properties and point process
operations such as thinning, displacements, and superpositioning.
We also discuss how to simulate specific Cox processes.
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1 Introduction

Spatial point pattern datasets occur in a variety of sciences, and the theory
of spatial point processes and their applications have been treated in various
textbooks, including Stoyan, Kendall & Mecke (1995), Lieshout (2000), Diggle
(2003), Moller & Waagepetersen (2003), and Baddeley, Gregori, Mateu, Stoica
& Stoyan (2006). Indeed this is an active research area, and the purpose of the
present paper is to discuss recent advances in a special topic, namely spatial
Cox process theory. A Cox process X on the d-dimensional Fuclidean space
R? results from a doubly stochastic process given by a random non-negative
function A = (A(u))yuepe such that X conditional on A is a Poisson process
with intensity function A. The Cox process can also be specified by the random
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intensity measure M(B) = [, A(u)du, and it should be obvious that many of
the definitions and results in this paper easily extend to a Cox process driven by
a random measure which is not necessarily absolutely continuous with respect
to Lebesgue measure. Cox processes constitute the most useful class of spatial
point process models for aggregated point patterns, where the statistical aspects
are studied in the above-mentioned textbooks and in Mgller & Waagepetersen
(2006), while probabilistic aspects are studied in Grandell (1976), Kingman
(1993) and Daley & Vere-Jones (2003).

This paper focuses on the probabilistic properties of Cox processes which are
important for statistical modelling and inference. Section 2 provides some back-
ground material on spatial point processes and particularly the Poisson process.
Due to its mathematical tractability, the Poisson process has enjoyed popular-
ity out of proportion to its realism. In Section 3, we therefore introduce Cox
processes and study some of their general properties. The main section is Sec-
tion 4, where we study the most important classes of Cox processes, namely log
Gaussian Cox processes (Mgller, Syversveen & Waagepetersen, 1998) and shot
noise Cox processes (Brix, 1999 and Mgller, 2003) together with mixed Poisson
processes and also a new class of models called permanent Cox processes (Mc-
Cullagh & Mpgller, 2005). In particular, we consider moment properties and
point process operations such as thinning, displacements, and superposition-
ing. We also consider how to simulate specific Cox processes, since simulation
is an indispensable tool for statistical inference (Mgller & Waagepetersen, 2003
and 2006).

2 Preliminaries

2.1 Fundamental Definitions

For simplicity and ease of presentation, we define a spatial point process on
R? as a locally finite random set X C R?, meaning that for any bounded
Borel set B C R?, the number of points in X = X N B is a finite random
variable denoted N(B). This definition is illuminating and sufficient for most
applications, and the extension of this and other definitions in this paper to
point processes with multiple points is rather straightforward (viz. by viewing
the counts N(B) as a counting process).

We say that X is stationary respective isotropic if its distribution is invariant
under translations in R? respective rotations about the origin in R?. Station-
arity and isotropy may be reasonable assumptions for point processes observed
within a homogeneous study region, but it is important to evaluate these as-
sumptions (Baddeley, Mgller & Waagepetersen, 2000, Baddeley, Turner, Mgller
& Hazelton, 2005 and Mgller & Waagepetersen, 2006). We shall later consider
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inhomogeneous point process models which incorporate spatial covariate infor-
mation.

For integers n > 1, the nth order factorial moment measure p™ of X is
defined by

for Borel sets A C R, where # over the summation sign means that the sum
runs over all pairwise different points uq,...,u, in X, and 1[-] is the indicator
function. Throughout this paper we assume that (™ is locally finite and has
a density p(") with respect to Lebesgue measure on R?", where we call p(™) the
nth order product density. Intuitively, if uy, ..., u, € R? are pairwise different,
p™(uy, ..., up)duy - --du, is the probability of observing n points from X
occurring jointly in each of n infinitesimally small regions of areas duy, ..., du,
and containing wy, ..., u,.

The first and second order factorial moment measures are most important
for statistical inference, see e.g. Mgller & Waagepetersen (2003 and 2006). In
particular, u(A) = p(A) = EN(A) is the moment measure, and p = p(b) is
the intensity (function). The pair correlation function is defined by

(u.0) P (u,v)
g u?” = TN N

p(u)p(v)
(provided p(u) > 0 and p(v) > 0). This kind of normalizing is useful, since
g = 1 in the case of no interaction (see Section 2.3). We interpret g(u,v) > 1 as
attraction between points of the process at locations w and v, and g(u,v) < 1
as repulsion at the two locations. Stationarity of X implies that we can assume
that p(u) is constant and g(u,v) = g(u — v) is translation invariant, and if also
isotropy holds then g(u,v) = g(||u — v||) depends only on the distance between
w and v.

2.2 Point Process Operations

We shall study three fundamental operations for spatial point processes.

First, suppose © : R? — [0,1] is a Borel function. An independent -
thinning of X is obtained by independent retaining each point « in X with
probability m(u). The intensity of the thinned process is 7(u)p(u), while g is
the same for the two processes.

Second, for points « in X, suppose m, is a random variable in R? with
density p, with respect to Lebesgue measure, where conditional on X, the m,,
are independent. Then the point process X* = {u +m,, : u € X} is produced
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by random independent displacements of the points in X. The displaced process
has intensity

o' = [ polpa(u= o), (1)

provided p* is locally integrable. If X is stationary and p, = p does not depend
on u, then X* is stationary with intensity p* = p.

Third, the superposition of two point processes X and Y is their union
X UY. Assuming the two processes are almost surely disjoint, the intensity of
the superposition is given by the sum of intensities of the two processes.

These point process operations may be applied simultaneously. For exam-
ple, Lund & Rudemo (2000) considers incomplete observations of tree positions
from aerial photography data which are modelled by the combined effects of
thinning, random displacements, and superpositioning.

2.3 The Poisson Process

The most fundamental point process model is the Poisson process, which for
any bounded Borel set B C R? with u(B) > 0 satisfies that

(i) N(B) is Poisson with mean u(B);

(ii) the points in X p are independent of N(B) and i.i.d. with density propor-
tional to p(u), u € B.

This description and the properties below easily extend to the case of a general
intensity measure, which is not necessarily absolutely continuous with respect
to Lebesgue measure (i.e. when the intensity function is not assumed to ex-
ist). Poisson processes are studied in detail in Kingman (1993) and Mgller &
Waagepetersen (2003). In the stationary case, we have a homogeneous Poisson
process, which is also isotropic.

Realisations may appear to be rather chaotic with large empty space and
close pairs of points, even when the Poisson process is homogeneous. Exam-
ples of simulated homogeneous and inhomogeneous Poisson point processes are
shown in Figure 1, where in the inhomogeneous case (the right plot) there is a
decreasing log linear trend in the vertical direction.
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Figure 1. Simulation of homogeneous (left) and inhomogeneous (right) Poisson processes
on W = [0,1] X [0,0.7]. In both cases the expected number of points is 150. For the
inhomogeneous Poisson process, p(x,y) « exp(—10.6y), (z,y) € W.

The Poisson process is a model for “no interaction” or “complete spatial
randomness”, since X4 and Xp are independent whenever A,B C R? are
disjoint. Moreover, p™ (uy,...,un) = pluy)---p(u,) and g = 1, reflecting
the lack of interaction. Note that another Poisson process results if we make
(a) an independent thinning of a Poisson process, or (b) random independent
displacements of the points in a Poisson process, or (c) a superposition of
independent Poisson processes. The intensity of the resulting Poisson process
in (a)-(c) is of course as described in Section 2.2.

It is straightforward to simulate a homogeneous Poisson process within a
bounded region W C R?, using (i)-(ii) above or other simple constructions
(Section 3.2.3 in Mgller & Waagepetersen, 2003). To obtain a realisation of an
inhomogeneous Poisson process on W, if p(u) is bounded by a constant K for
all u € W, we can first simulate a homogeneous Poisson process with intensity
K on W, and second make an independent (£ )-thinning.

Finally, for statistical modelling, when a vector z(u) = (z1(u), ..., zx(u)) of
covariates is available, typically a log linear model of the intensity function is
considered,

log p(u) = 2(u)3" (2)
where 8 = (61,...,8k) is a regression parameter. This is the canonical link
function for an inhomogeneous Poisson process (McCullagh & Nelder, 1989).
In the right plot of Figure 1, we have that k =2, z; = 1, and 22(u) = y is the
second coordinate of u = (z,y).

3 General Description of Cox Processes

One natural extension of the Poisson process is to consider a non-negative
stochastic process A = (A(u)),cpe such that X conditional on A is a Poisson
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process with intensity A (Cox, 1955).Then we say that X is a Cox process driven
by A. Usually in applications, A models an unobserved random heterogeneity.
Below we review some general results of relevance for the specific Cox process
models studied in Section 4, where the properties of the Cox process X follow
immediately from the properties of the Poisson process X|A.

We have that X is stationary or isotropic if A is stationary or isotropic,
respectively. Moreover,

SO

p(u) = E{A(w)},  g(u,v) =E {M} .

p(u)p(v)

Thus two Cox processes driven by A(u) respective h(u)A(u), where h is a
nonnegative Borel function, share the same pair correlation function. For most
specific Cox process models, g > 1, though there exist some exceptions, see
Section 4.2. Similarly, for Borel sets A, B C R? such that N(A) and N(B) have
finite variance, the covariance

Cov(N(A),N(B)) = /A/BCOV(A(U), A(v)) dudv + p(AN B) (3)

is usually nonnegative.

The class of Cox processes is invariant under the basic point process opera-
tions. Specifically, an independent 7-thinning of X is a Cox process driven by
m(u)A(u). Furthermore, random independent displacements of the points in X
produce a Cox process driven by

A (u) = /A(u)pv(u —v)dv, (4)

cf. (1). Finally, the superposition of two Cox processes driven by independent
processes A1 and As is a Cox process driven by Ay + As.

4 Particular Cox Process Models

4.1 Mixed Poisson Process

The simplest case of a Cox process is a mized Poisson process where A(u) is
equal to the same nonnegative random variable T for all locations v € R?. Like
Poisson processes, mixed Poisson processes are usually too simplistic models
for real data. In the special case where I' is deterministic, the process is simply
a homogeneous Poisson process. Another case is when I' is gamma distributed,
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and hence N(A) follows a negative binomial distribution. In the sequel, we
assume that I' is not deterministic.
A mixed Poisson process is stationary and isotropic, with intensity p = EI’

2
and pair correlation function g = E(prz ) > 1. By (3),

Cov(N(A), N(B)) = | A||B|Var(T) + |A N B|p,

where | - | denotes Lebesgue measure. Consequently, N(A) and N(B) are posi-
tively correlated even if A and B are disjoint. Moreover, VarN(A) > E{N(4)},
i.e. the distribution of N(A) is over-dispersed (while for a Poisson process,
Var{N(A)} = E{N(4)}).

The class of mixed Poisson processes is obviously closed under independent
superpositioning, and also 7-thinning provided 7(u) is constant for all u € R?.
The displaced process X* is equivalent to X provided p,(-) does not depend
on v € R%, since then A*(u) =T, cf. (4).

Simulation of the process within a bounded region W C R? is just a matter
of simulating first the random variable I and second the homogeneous Poisson
process Xy |T.

Conversely, for statistical inference, if we observe Xy, the conditional dis-
tribution of T given Xyy is of interest. This conditional distribution depends
on Xy only through N (W), since N(W) is a sufficient statistic for the Poisson
process Xy |T'. Tt is well known that if T’ is gamma distributed, then T'|N (W)
is gamma distributed.

4.2 Log Gaussian Cox Process

Suppose that
log A(u) = T(u), u€R?

where ¥ = (U(u)),cpa is a Gaussian process with mean {(u) = E{T(u)} and
covariance function C'(u,v) = Cov(¥(u), ¥(v)). Then we call X a log Gaussian
Coz process (LGCP) (Mgller et al., 1998). To ensure local integrability of A(u),
C has to satisfy certain mild conditions, which are satisfied for covariance mod-
els used in practice. Spatio-temporal extensions of log Gaussian Cox processes
are studied in Brix & Diggle (2001) and Brix & Mgller (2001).

As an extension of the log linear model (2), we may have that £(u) =
z(u)BT. Note that the LGCP is stationary if and only if we can take &(u)
to be constant and C(u,v) = C(u — v), and it is moreover isotropic if and
only if we can take C(u) = C(||u|]). Figure 2 shows simulations of planar

LGCP’s within [0, 1]%, with £(u) = 4.10 and exponential covariance function
C(u,v) = exp(—g7"!
2
exp(%) (right plot). The associated simulated intensity functions are

) (left plot) or Gaussian covariance function C(u,v) =
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also shown, where W is smoother for the Gaussian correlation function (Adler,
1981). Further examples of simulated LGCP’s are given in Mgller et al. (1998).

Figure 2. Simulations of LGCP’s with exponential (left) and Gaussian (right) correlation

functions. The associated simulated random intensity functions are shown in grey scale.

The product densities of a LGCP are particular tractable, as

c(u, u)
2

log p(u) = &(u) + g(u,v) = exp(C(u,v)),

and higher-order product densities are nicely expressed in terms of p and g,

n

P(n)(ﬂl»---,un):Hp(M) H g(wi,uj).

i=1 1<i<jg<n

Thus ¢g and C are in a one-to-one correspondence, and the distribution of X
is determined by specifying £ and C or equivalently p and ¢g. Usually, C > 0
so that g > 1, but there do exist covariance function which can be negative,
making it possible that g(u,v) < 1, cf. Mgller et al. (1998).

Another advantageous property is that if we only observe X within a region
W C R?, then Xy is specified by the Gaussian process restricted to W. Thus
we have no problem with edge effects.

Moreover, the class of LGCP’s is closed under independent 7-thinning pro-
vided 7(+) > 0, since {¥(u) 4+ log7(u)},cpa is the underlying Gaussian process
of the thinned process. On the other hand, the class is not closed under random
independent displacements or independent superpositioning.

For simulation of a LGCP within a bounded region W C R?, we consider
a fine finite partition A;, i € I of W, and approximate the Gaussian process

8 ©(2005) J. Stat. Res. Iran 2
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(U(u))uew by a step function with value ¥(u;) within A;, where u; is a rep-
resentative point in A;. There are many ways of simulating the Gaussian vec-
tor (U(u;))ier, see e.g. Schlather (1999) and Mgller & Waagepetersen (2003).
Given a realisation of (¥(u;));es, we can simulate the inhomogeneous Poisson
process X |(¥(u;));er using the independent thinning technique in Section 2.3.

The conditional distribution of (¥(u;))i € I given Xy is complicated, and
its density is only known up to proportionality. Simulations may be obtained
using Langevin-Hastings algorithms, see Mgller et al. (1998) and Mgller &
Waagepetersen (2003).

4.3 Shot Noise Cox Process

Consider a Poisson process ® with points (¢,v) € R? x (0,00) and intensity
function ((c,v), and let k(c,-) be a kernel (i.e. a density for a d-dimensional
continuous random variable on R?) specified for any ¢ € R?. Assuming

Alu) = Z vk(c,u), u€R? (5)
(c,7)E®

then X is a shot noise Cozx process (SNCP) (Mgller, 2003b). The process is an
example of a Poisson cluster process, since X is distributed as the superposi-
tion of independent Poisson processes X ) with intensity functions vk(c,-),
(c,7) € ®, where we interpret X(. ) as a cluster with centre ¢ and mean
number of points v. SNCP’s provide natural models for seed setting mecha-
nisms causing clustering (Brix & Chadoeuf, 2002), and they can be extended
in various interesting ways, see (Mgller & Torrisi, 2005).

Product densities for SNCP’s are in general more clumsy to work with than
for LGCP’s. The intensity is

oy = [ [ ke wctededs,

and it can be shown that g > 1. Inhomogeneous versions of SNCP’s processes
may be obtained by adding to the right hand side of (5) a positive term de-
pending on spatial covariates or using a multiplicative model, for example of
the form

Au) = exp {z(u)BT} D" yk(cu), (6)

(e,7)E®

(Waagepetersen, 2005). A nice feature of the latter model is that the pair
correlation function of X is the same for (5) and (6), i.e. it does not depend on
the parameter 3, cf. Section 2.

A particular tractable case is a Neyman-Scott process (Neyman & Scott,
1958), where the centre points form a stationary Poisson process with intensity
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k and the 7’s are all equal to a positive parameter a. If furthermore k(c,-)
is the density of the d-dimensional normal distribution N4(c,w?I) with mean
¢ and independent coordinates with variance w?, then X is a Thomas pro-
cess (Thomas, 1949). The Neyman-Scott process is stationary with intensity
p = ak, and the Thomas process is also isotropic with

2
B b (7
gr)=14 ———=~, r>0.
K(4mw?)E
Figure 3 shows a simulation of a planar Thomas process within [0, 1]?, with
k=10, a = 10, and w? = 0.1.

Figure 3. Simulation of a Thomas process and the associated random intensity functions

(in grey scale). The crosses show the cluster centres for the Thomas process.

The subclass of shot noise G Cox processes (SNGCP) (Brix, 1999) has

—a—1 eXp(—T’Y)
Cle,y) = kv Ti—a)
Here, in order to ensure local integrability of ®, we assume that the parameters
satisfy the constraints k > 0, @« < 1, and 7 > 0. If a < 0, then the ¢’s
form a stationary Poisson process with intensity =%~ the 4’s are i.i.d. and
independent of the ¢’s, and each v is gamma distributed with shape parameter
—a and inverse scale parameter 7. The description of ® when 0 < a < 1
is a bit technical, since the ¢’s do not form a locally finite set, see Mgller &
Waagepetersen (2002, 2003) and Mpgller (2003a, 2003b). For a SNGCP with
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k(c,u) = k(u — ¢) for all c,u € R?, we have stationarity and p = k7o', If
furthermore k(c,-) is the density of N4(c,w?I), we also have isotropy and ¢ is
of the same form as for a Thomas process, replacing & in (7) by =2

A SNGCP with @ = 0 is the so-called Poisson-gamma process (Wolpert
& Ickstadt, 1998 and Daley & Vere-Jones, 2003). The left plots in Figure 4
show simulations of planar Poisson-gamma processes within [0, 1]?, with k(c, -)
the density of Ny(c,0.0017) and (k,7) equal to (15,0.1) (upper left panel) or
(7.5,0.05) (lower left panel). The simulations are generated as described later,
using a truncated random intensity ® N (Wext X (€,00)), where Weyy D W is
an extended window and € > 0 is a user-specified parameter. The right plots
in Figure 4 show the corresponding realisations of ® N (Wext X (€,00)). Note
that the intensity p = Z is the same for the two sets of parameter values. With
the small values of k and v we obtain fewer and larger clusters than when the
larger values are used.

The class of SNCP’s is often closed under the basic operations of point
processes. More precisely, a m-thinned SNCP, where 7 is constant, is obviously
a SNCP. Further, a displaced SNCP is itself a SNCP with

AN(u) = Z v [ k(e,v)py(u—v)do.
P

c,7)EP

In the case of normal densities k(c,-) ~ Ng(c,w?I) and p,(-) ~ N4(0,02I), the
density u — [ k(c,v)p,(u—v)dv reduces to that of Ny(c+ v, (w? +¢?)I). Fur-
thermore, the superposition of two SNCP’s, specified by independent Poisson
processes with intensity functions ( respective 5 and the same kernels k(-, ), is
a SNCP specified by the Poisson process with intensity function { + Q: and the
kernels k(-,-).

For the simulation of a SNCP within a bounded region W C R?, edge
effects may occur since the Poisson process @ in (5) may be infinite, and so
clusters associated to centre points outside W may generate points of the shot
noise Cox process within W. There is a perfect simulation algorithm which
eliminates this problem (Brix & Kendall, 2002 and Mgller, 2003b). However,
from a practical view point, it suffices to use results for the error made when
® is replaced by Pirune = P N [Wext X (€,00)], where Weyt 2 W and € 2> 0, see
Mgller (2003b) and Mgller & Waagepetersen (2003). For example, in Figure 4
where W = [0, 1]2, we use the truncation € = 0.0001 and the extended window
Wexe = [—0.25,1.25]2.

Finally, conditional simulation of @,y given Xy is also discussed in Mgller
(2003b) and Mgller & Waagepetersen (2003).

2005) J. Stat. Res. Iran 2 11
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Figure 4. Left: simulations of Poisson-gamma processes (see text for details). Right: corre-

sponding realisations of ® N (Wext X (€,00)) (only points (¢,v) with v > 0.02 are shown).

12
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4.4 Permanent Process

Consider a bounded Borel set W C R?, and let v denote the distribution of the
homogeneous Poisson process with intensity one. The density of a Cox process
restricted to W and with respect to v is

fx)=e"IB {e‘fw““> 11 A(u)} .,

uex

for finite subsets x of W. In general this density is not of "known” form. One
exception is a mixed Poisson process driven by a gamma distributed random
intensity, but as noticed this model is rather uninteresting for real applications.
Recently, McCullagh & Mpgller (2005) introduced a large model class of point
process models, the permanent process, where both the density of the process
and the product densities are of a known form. This section considers the
subclass of permanent processes, which are also Cox processes.

The driving process of such a Cox process is defined for any positive integer
k and real covariance function C(u,v), u,v € R? by

Aw) =T (u)’ + ...+ Tp(u)?, uweR (8)

where (¥;(u))yere, J = 1,...,k are independent zero-mean Gaussian pro-
cesses with covariance function % As we shall see, both product densities and
the density of Xy are expressed in terms of a weighted matrix permanent,
explaining why X is called a permanent Cox process with parameters a = %
and C. The boson (or photon) process (Macchi (1971, 1975), Grandell, 1976
and Daley & Vere-Jones, 2003) corresponds to @ = 1. Another special case is
the mixed Poisson process obtained when C(u,v) = ¢ is constant and hence
A(u) ~ (£)x*(k) does not depend on u € R,

Clearly, the permanent Cox process is stationary if and only if we can
take C(u,v) = C(u — v), and it is moreover isotropic if and only if we can
take C(u,v) = C(]Ju — v||). Figure 5 shows simulations of planar permanent

1

Cox processes within [0,1]?, with a = 5 and exponential covariance func-

tion C'(u,v) = 300 exp{%} (left plot) or Gaussian covariance function

C(u,v) = 300 exp{%&”“z} (right plot). The associated simulated intensity

functions are also shown.

The following results are verified in McCullagh & Mgller (2005), but first we
need to introduce some notation. For any points x1,...,z, € R?, the symbol
[C](x1, ..., %) denotes the n xn matrix with entries C(z;,x;). The a-weighted
permanent is

per, [Cl(z1,...,2n) = Za#”C(a:l.,a:a(l)) O (@, To(n)),
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Figure 5. Simulations of permanent Cox processes with exponential (left) and Gaussian
(right) correlation functions. The associated simulated random intensity functions are shown

in grey scale.

where the sum is over all permutations of 1,...,n and #o is the number of
cycles. The usual permanent corresponds to @ = 1 (Minc 1978). Weighted
permanents are symmetric functions, and it is often convenient just to write

per, [C](x) for a finite set x = {x1,...,7,} C R? of n points. Moreover, we set
per, [C](0) = 1.
We have
P (ur, .. un) = per, [C)(ur, . - . un). (9)
Thus )
plu) = aC(u,w),  gfuv) =1+ XL
where cor(u,v) = L)l is the correlation function. Consequently,

{Cw,u)C(v,0)}2

g > 1. In particular, ¢ — 1 as &« — oo, which is to be expected, since X can be
viewed as the superposition of k& independent copies of the permanent process
with parameter £ = 1. In some sense the process becomes close to a Poisson
process as a — 00, since %“) converges almost surely to C(u,u).

In order to specify the density of Xy, we make the following assumptions.
Suppose that W is compact and the restriction of the covariance function C to
W x W is a continuous function. Then by Mercer’s theorem (e.g. Dieudonné,

1969), the covariance function has spectral representation

C(u,v) = Z)\rer(u)er(v)v u,v € W
r=0

14 ©(2005) J. Stat. Res. Iran 2
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with absolutely and uniformly convergence in W x W. Here the eigenvalues
satisfy Ag > A1 > ... > 0, and the eigenfunctions e, form an orthonormal basis
of Lo(W), the space of square integrable real Borel functions on W with the
inner product (p,q) = fW p(u)g(u) du. We can therefore take

U,(u) = Z Virer(u), wew (10)

where the V;, are independent N(0, 2=)-distributed random variables. It is
convenient to introduce
~ A

)\Tzi. :0,1
a+r) !

and

é(u’p) = Zj\rer(u)er(v)v u,v € w
r=0

which in fact is a well-defined and continuous covariance function. Further,
define (A(u))uew and Xy in the same way as above for (A(u))uew and Xy
except that we replace C' by C. Furthermore,

D= ilog(l + ) =— ilog(l -A)
r=0

r=0

is well-defined, since 0 < log(1 + A.) € A, and > A, < oo. Then Xy has
density
f(x) = el"I=2P per_ [C](x). (11)

Many other appealing properties are established in McCullagh & Mgller
(2005). In particular, the density (11) can be extended to the noninteger case
of 2a. > 0 and the case where C is defined in terms of a nonnegative symmetric
function C' in a somewhat similar way as above (such extensions seem not to
be Cox processes). For the extended process, the product densities are still of
the form (9).

Moreover, as for LGCP’s, edge effects are not a problem, at least for per-
manent Cox processes, cf. (8). From (8) we also obtain that the class of perma-
nent Cox processes is closed under independent thinning and superpositioning.
Specifically, an independent w-thinning is a permanent process with param-
eters « and \/w(u)ﬂ(v)w. Further, the superposition of two permanent
processes with parameters a respective o' but the same C' is a permanent pro-
cess with parameters a + o’ and C. On the other hand, random independent
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displacements of the points in a permanent process create a more complicated
point process.

Simulation of the permanent Cox process within W is straightforward once
we have simulated the Gaussian processes in (8), e.g. by using (10). To the
best of my knowledge, algorithms for simulation from A(u),ew|Xw have yet
not been investigated. Finally, for the computational problem of calculating
permanents, we refer to McCullagh & Mgller (2005) and the references therein.
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