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Abstract. Probabilistic properties of Cox processes of relevancefor statistical modelling and inference are studied. Particularly, westudy the most important classes of Cox processes, including logGaussian Cox processes, shot noise Cox processes, and permanentCox processes. We consider moment properties and point processoperations such as thinning, displacements, and superpositioning.We also discuss how to simulate speci�c Cox processes.Keywords. Doubly stochastic process; edge e�ects; intensity;log Gaussian Cox process; mixed Poisson process; pair correlationfunction; permanent process; random displacements; shot noiseCox process; simulation, spatial point process; superposition; thin-ning.1 IntroductionSpatial point pattern datasets occur in a variety of sciences, and the theoryof spatial point processes and their applications have been treated in varioustextbooks, including Stoyan, Kendall & Mecke (1995), Lieshout (2000), Diggle(2003), M�ller & Waagepetersen (2003), and Baddeley, Gregori, Mateu, Stoica& Stoyan (2006). Indeed this is an active research area, and the purpose of thepresent paper is to discuss recent advances in a special topic, namely spatialCox process theory. A Cox process X on the d-dimensional Euclidean spaceRd results from a doubly stochastic process given by a random non-negativefunction � = (�(u))u2Rd such that X conditional on � is a Poisson processwith intensity function �. The Cox process can also be speci�ed by the random
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105 Properties of Spatial Cox Process Modelsintensity measure M(B) = RB �(u) du, and it should be obvious that many ofthe de�nitions and results in this paper easily extend to a Cox process driven bya random measure which is not necessarily absolutely continuous with respectto Lebesgue measure. Cox processes constitute the most useful class of spatialpoint process models for aggregated point patterns, where the statistical aspectsare studied in the above-mentioned textbooks and in M�ller & Waagepetersen(2006), while probabilistic aspects are studied in Grandell (1976), Kingman(1993) and Daley & Vere-Jones (2003).This paper focuses on the probabilistic properties of Cox processes which areimportant for statistical modelling and inference. Section 2 provides some back-ground material on spatial point processes and particularly the Poisson process.Due to its mathematical tractability, the Poisson process has enjoyed popular-ity out of proportion to its realism. In Section 3, we therefore introduce Coxprocesses and study some of their general properties. The main section is Sec-tion 4, where we study the most important classes of Cox processes, namely logGaussian Cox processes (M�ller, Syversveen & Waagepetersen, 1998) and shotnoise Cox processes (Brix, 1999 and M�ller, 2003) together with mixed Poissonprocesses and also a new class of models called permanent Cox processes (Mc-Cullagh & M�ller, 2005). In particular, we consider moment properties andpoint process operations such as thinning, displacements, and superposition-ing. We also consider how to simulate speci�c Cox processes, since simulationis an indispensable tool for statistical inference (M�ller & Waagepetersen, 2003and 2006).2 Preliminaries2.1 Fundamental De�nitionsFor simplicity and ease of presentation, we de�ne a spatial point process onRd as a locally �nite random set X � Rd , meaning that for any boundedBorel set B � R2 , the number of points in XB = X \ B is a �nite randomvariable denoted N(B). This de�nition is illuminating and su�cient for mostapplications, and the extension of this and other de�nitions in this paper topoint processes with multiple points is rather straightforward (viz. by viewingthe counts N(B) as a counting process).We say thatX is stationary respective isotropic if its distribution is invariantunder translations in Rd respective rotations about the origin in Rd . Station-arity and isotropy may be reasonable assumptions for point processes observedwithin a homogeneous study region, but it is important to evaluate these as-sumptions (Baddeley, M�ller & Waagepetersen, 2000, Baddeley, Turner, M�ller& Hazelton, 2005 and M�ller & Waagepetersen, 2006). We shall later consider2 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 104inhomogeneous point process models which incorporate spatial covariate infor-mation.For integers n > 1, the nth order factorial moment measure �(n) of X isde�ned by �(n)(A) = E 6=Xu1;:::;un2X1[(u1; : : : ; un) 2 A]for Borel sets A � Rdn , where 6= over the summation sign means that the sumruns over all pairwise di�erent points u1; : : : ; un in X, and 1[�] is the indicatorfunction. Throughout this paper we assume that �(n) is locally �nite and hasa density �(n) with respect to Lebesgue measure on Rdn , where we call �(n) thenth order product density. Intuitively, if u1; : : : ; un 2 Rd are pairwise di�erent,�(n)(u1; : : : ; un) du1 � � �dun is the probability of observing n points from Xoccurring jointly in each of n in�nitesimally small regions of areas du1; : : : ; dunand containing u1; : : : ; un.The �rst and second order factorial moment measures are most importantfor statistical inference, see e.g. M�ller & Waagepetersen (2003 and 2006). Inparticular, �(A) = �(1)(A) = EN(A) is the moment measure, and � = �(1) isthe intensity (function). The pair correlation function is de�ned byg(u; v) = �(2)(u; v)�(u)�(v) ;(provided �(u) > 0 and �(v) > 0). This kind of normalizing is useful, sinceg � 1 in the case of no interaction (see Section 2.3). We interpret g(u; v) > 1 asattraction between points of the process at locations u and v, and g(u; v) < 1as repulsion at the two locations. Stationarity of X implies that we can assumethat �(u) is constant and g(u; v) = g(u� v) is translation invariant, and if alsoisotropy holds then g(u; v) = g(ku� vk) depends only on the distance betweenu and v.2.2 Point Process OperationsWe shall study three fundamental operations for spatial point processes.First, suppose � : Rd 7! [0; 1] is a Borel function. An independent �-thinning of X is obtained by independent retaining each point u in X withprobability �(u). The intensity of the thinned process is �(u)�(u), while g isthe same for the two processes.Second, for points u in X, suppose mu is a random variable in Rd withdensity pu with respect to Lebesgue measure, where conditional on X, the muare independent. Then the point process X� = fu+mu : u 2 Xg is producedc
(2005) J. Stat. Res. Iran 2 3

 [
 D

O
I:

 1
0.

18
86

9/
ac

ad
pu

b.
js

ri
.2

.1
.8

9 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 js

ri
.s

rt
c.

ac
.ir

 o
n 

20
25

-1
1-

30
 ]

 

                             3 / 18

http://dx.doi.org/10.18869/acadpub.jsri.2.1.89
https://jsri.srtc.ac.ir/article-1-149-en.html


103 Properties of Spatial Cox Process Modelsby random independent displacements of the points inX. The displaced processhas intensity ��(u) = Z �(v)pv(u� v) dv; (1)provided �� is locally integrable. If X is stationary and pu = p does not dependon u, then X� is stationary with intensity �� = �.Third, the superposition of two point processes X and Y is their unionX[Y. Assuming the two processes are almost surely disjoint, the intensity ofthe superposition is given by the sum of intensities of the two processes.These point process operations may be applied simultaneously. For exam-ple, Lund & Rudemo (2000) considers incomplete observations of tree positionsfrom aerial photography data which are modelled by the combined e�ects ofthinning, random displacements, and superpositioning.2.3 The Poisson ProcessThe most fundamental point process model is the Poisson process, which forany bounded Borel set B � Rd with �(B) > 0 satis�es that(i) N(B) is Poisson with mean �(B);(ii) the points in XB are independent of N(B) and i.i.d. with density propor-tional to �(u); u 2 B.This description and the properties below easily extend to the case of a generalintensity measure, which is not necessarily absolutely continuous with respectto Lebesgue measure (i.e. when the intensity function is not assumed to ex-ist). Poisson processes are studied in detail in Kingman (1993) and M�ller &Waagepetersen (2003). In the stationary case, we have a homogeneous Poissonprocess, which is also isotropic.Realisations may appear to be rather chaotic with large empty space andclose pairs of points, even when the Poisson process is homogeneous. Exam-ples of simulated homogeneous and inhomogeneous Poisson point processes areshown in Figure 1, where in the inhomogeneous case (the right plot) there is adecreasing log linear trend in the vertical direction.4 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 102
Figure 1. Simulation of homogeneous (left) and inhomogeneous (right) Poisson processeson W = [0; 1] � [0; 0:7]. In both cases the expected number of points is 150. For theinhomogeneous Poisson process, �(x; y) / exp(�10:6y); (x; y) 2W .The Poisson process is a model for \no interaction" or \complete spatialrandomness", since XA and XB are independent whenever A;B � Rd aredisjoint. Moreover, �(n)(u1; : : : ; un) = �(u1) � � � �(un) and g � 1, re
ectingthe lack of interaction. Note that another Poisson process results if we make(a) an independent thinning of a Poisson process, or (b) random independentdisplacements of the points in a Poisson process, or (c) a superposition ofindependent Poisson processes. The intensity of the resulting Poisson processin (a)-(c) is of course as described in Section 2.2.It is straightforward to simulate a homogeneous Poisson process within abounded region W � Rd , using (i)-(ii) above or other simple constructions(Section 3.2.3 in M�ller & Waagepetersen, 2003). To obtain a realisation of aninhomogeneous Poisson process on W , if �(u) is bounded by a constant K forall u 2 W , we can �rst simulate a homogeneous Poisson process with intensityK on W , and second make an independent ( �K )-thinning.Finally, for statistical modelling, when a vector z(u) = (z1(u); : : : ; zk(u)) ofcovariates is available, typically a log linear model of the intensity function isconsidered, log �(u) = z(u)�T (2)where � = (�1; : : : ; �k) is a regression parameter. This is the canonical linkfunction for an inhomogeneous Poisson process (McCullagh & Nelder, 1989).In the right plot of Figure 1, we have that k = 2, z1 � 1, and z2(u) = y is thesecond coordinate of u = (x; y).3 General Description of Cox ProcessesOne natural extension of the Poisson process is to consider a non-negativestochastic process � = (�(u))u2Rd such that X conditional on � is a Poissonc
(2005) J. Stat. Res. Iran 2 5
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101 Properties of Spatial Cox Process Modelsprocess with intensity� (Cox, 1955).Then we say thatX is a Cox process drivenby �. Usually in applications, � models an unobserved random heterogeneity.Below we review some general results of relevance for the speci�c Cox processmodels studied in Section 4, where the properties of the Cox process X followimmediately from the properties of the Poisson process Xj�.We have that X is stationary or isotropic if � is stationary or isotropic,respectively. Moreover,�(n)(u1; : : : ; un) = E f�(u1) � � ��(un)g ;so �(u) = Ef�(u)g; g(u; v) = E��(u)�(v)�(u)�(v) � :Thus two Cox processes driven by �(u) respective h(u)�(u), where h is anonnegative Borel function, share the same pair correlation function. For mostspeci�c Cox process models, g > 1, though there exist some exceptions, seeSection 4.2. Similarly, for Borel sets A;B � Rd such that N(A) and N(B) have�nite variance, the covarianceCov(N(A); N(B)) = ZA ZB Cov(�(u);�(v)) dudv + �(A \ B) (3)is usually nonnegative.The class of Cox processes is invariant under the basic point process opera-tions. Speci�cally, an independent �-thinning of X is a Cox process driven by�(u)�(u). Furthermore, random independent displacements of the points in Xproduce a Cox process driven by��(u) = Z �(u)pv(u� v) dv; (4)cf. (1). Finally, the superposition of two Cox processes driven by independentprocesses �1 and �2 is a Cox process driven by �1 +�2.4 Particular Cox Process Models4.1 Mixed Poisson ProcessThe simplest case of a Cox process is a mixed Poisson process where �(u) isequal to the same nonnegative random variable � for all locations u 2 Rd . LikePoisson processes, mixed Poisson processes are usually too simplistic modelsfor real data. In the special case where � is deterministic, the process is simplya homogeneous Poisson process. Another case is when � is gamma distributed,6 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 100and hence N(A) follows a negative binomial distribution. In the sequel, weassume that � is not deterministic.A mixed Poisson process is stationary and isotropic, with intensity � = E�and pair correlation function g = E(�2)�2 > 1. By (3),Cov(N(A); N(B)) = jAjjBjVar(�) + jA \Bj�;where j � j denotes Lebesgue measure. Consequently, N(A) and N(B) are posi-tively correlated even if A and B are disjoint. Moreover, VarN(A) > EfN(A)g,i.e. the distribution of N(A) is over-dispersed (while for a Poisson process,VarfN(A)g = EfN(A)g).The class of mixed Poisson processes is obviously closed under independentsuperpositioning, and also �-thinning provided �(u) is constant for all u 2 Rd .The displaced process X� is equivalent to X provided pv(�) does not dependon v 2 Rd , since then ��(u) = �, cf. (4).Simulation of the process within a bounded regionW � Rd is just a matterof simulating �rst the random variable � and second the homogeneous Poissonprocess XW j�.Conversely, for statistical inference, if we observe XW , the conditional dis-tribution of � given XW is of interest. This conditional distribution dependson XW only through N(W ), since N(W ) is a su�cient statistic for the Poissonprocess XW j�. It is well known that if � is gamma distributed, then �jN(W )is gamma distributed.4.2 Log Gaussian Cox ProcessSuppose that log�(u) = 	(u); u 2 Rdwhere 	 = (	(u))u2Rd is a Gaussian process with mean �(u) = Ef	(u)g andcovariance function C(u; v) = Cov(	(u);	(v)). Then we call X a log GaussianCox process (LGCP) (M�ller et al., 1998). To ensure local integrability of �(u),C has to satisfy certain mild conditions, which are satis�ed for covariance mod-els used in practice. Spatio-temporal extensions of log Gaussian Cox processesare studied in Brix & Diggle (2001) and Brix & M�ller (2001).As an extension of the log linear model (2), we may have that �(u) =z(u)�T. Note that the LGCP is stationary if and only if we can take �(u)to be constant and C(u; v) = C(u � v), and it is moreover isotropic if andonly if we can take C(u) = C(kuk). Figure 2 shows simulations of planarLGCP's within [0; 1]2, with �(u) = 4:10 and exponential covariance functionC(u; v) = exp(�ku�vk0:14 ) (left plot) or Gaussian covariance function C(u; v) =exp(�ku�vk20:01 ) (right plot). The associated simulated intensity functions arec
(2005) J. Stat. Res. Iran 2 7
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99 Properties of Spatial Cox Process Modelsalso shown, where 	 is smoother for the Gaussian correlation function (Adler,1981). Further examples of simulated LGCP's are given in M�ller et al. (1998).

Figure 2. Simulations of LGCP's with exponential (left) and Gaussian (right) correlationfunctions. The associated simulated random intensity functions are shown in grey scale.The product densities of a LGCP are particular tractable, aslog �(u) = �(u) + c(u; u)2 ; g(u; v) = exp(C(u; v));and higher-order product densities are nicely expressed in terms of � and g,�(n)(u1; : : : ; un) = nYi=1 �(ui) Y16i<j6n g(ui; uj):Thus g and C are in a one-to-one correspondence, and the distribution of Xis determined by specifying � and C or equivalently � and g. Usually, C > 0so that g > 1, but there do exist covariance function which can be negative,making it possible that g(u; v) < 1, cf. M�ller et al. (1998).Another advantageous property is that if we only observeX within a regionW � Rd , then XW is speci�ed by the Gaussian process restricted to W . Thuswe have no problem with edge e�ects.Moreover, the class of LGCP's is closed under independent �-thinning pro-vided �(�) > 0, since f	(u)+ log�(u)gu2Rd is the underlying Gaussian processof the thinned process. On the other hand, the class is not closed under randomindependent displacements or independent superpositioning.For simulation of a LGCP within a bounded region W � Rd , we considera �ne �nite partition �i; i 2 I of W , and approximate the Gaussian process8 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 98(	(u))u2W by a step function with value 	(ui) within �i, where ui is a rep-resentative point in �i. There are many ways of simulating the Gaussian vec-tor (	(ui))i2I , see e.g. Schlather (1999) and M�ller & Waagepetersen (2003).Given a realisation of (	(ui))i2I , we can simulate the inhomogeneous Poissonprocess Xj(	(ui))i2I using the independent thinning technique in Section 2.3.The conditional distribution of (	(ui))i 2 I given XW is complicated, andits density is only known up to proportionality. Simulations may be obtainedusing Langevin-Hastings algorithms, see M�ller et al. (1998) and M�ller &Waagepetersen (2003).4.3 Shot Noise Cox ProcessConsider a Poisson process � with points (c; 
) 2 Rd � (0;1) and intensityfunction �(c; 
), and let k(c; �) be a kernel (i.e. a density for a d-dimensionalcontinuous random variable on Rd) speci�ed for any c 2 Rd . Assuming�(u) = X(c;
)2�
k(c; u); u 2 Rd (5)then X is a shot noise Cox process (SNCP) (M�ller, 2003b). The process is anexample of a Poisson cluster process, since X is distributed as the superposi-tion of independent Poisson processes X(c;
) with intensity functions 
k(c; �),(c; 
) 2 �, where we interpret X(c;
) as a cluster with centre c and meannumber of points 
. SNCP's provide natural models for seed setting mecha-nisms causing clustering (Brix & Chadoeuf, 2002), and they can be extendedin various interesting ways, see (M�ller & Torrisi, 2005).Product densities for SNCP's are in general more clumsy to work with thanfor LGCP's. The intensity is�(u) = ZRd Z 10 
k(c; u)�(c; 
) dc d
;and it can be shown that g > 1. Inhomogeneous versions of SNCP's processesmay be obtained by adding to the right hand side of (5) a positive term de-pending on spatial covariates or using a multiplicative model, for example ofthe form �(u) = exp�z(u)�T	 X(c;
)2�
k(c; u); (6)(Waagepetersen, 2005). A nice feature of the latter model is that the paircorrelation function of X is the same for (5) and (6), i.e. it does not depend onthe parameter �, cf. Section 2.A particular tractable case is a Neyman-Scott process (Neyman & Scott,1958), where the centre points form a stationary Poisson process with intensityc
(2005) J. Stat. Res. Iran 2 9
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97 Properties of Spatial Cox Process Models� and the 
's are all equal to a positive parameter �. If furthermore k(c; �)is the density of the d-dimensional normal distribution Nd(c; !2I) with meanc and independent coordinates with variance !2, then X is a Thomas pro-cess (Thomas, 1949). The Neyman-Scott process is stationary with intensity� = ��, and the Thomas process is also isotropic withg(r) = 1 + expn�r24!2 o�(4�!2) d2 ; r > 0: (7)Figure 3 shows a simulation of a planar Thomas process within [0; 1]2, with� = 10, � = 10, and !2 = 0:1.

Figure 3. Simulation of a Thomas process and the associated random intensity functions(in grey scale). The crosses show the cluster centres for the Thomas process.The subclass of shot noise G Cox processes (SNGCP) (Brix, 1999) has�(c; 
) = �
���1 exp(��
)�(1� �) :Here, in order to ensure local integrability of �, we assume that the parameterssatisfy the constraints � > 0, � < 1, and � > 0. If � < 0, then the c'sform a stationary Poisson process with intensity ����� , the 
's are i.i.d. andindependent of the c's, and each 
 is gamma distributed with shape parameter�� and inverse scale parameter � . The description of � when 0 6 � < 1is a bit technical, since the c's do not form a locally �nite set, see M�ller &Waagepetersen (2002, 2003) and M�ller (2003a, 2003b). For a SNGCP with10 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 96k(c; u) = k(u � c) for all c; u 2 Rd , we have stationarity and � = ����1. Iffurthermore k(c; �) is the density of Nd(c; !2I), we also have isotropy and g isof the same form as for a Thomas process, replacing � in (7) by 1����� .A SNGCP with � = 0 is the so-called Poisson-gamma process (Wolpert& Ickstadt, 1998 and Daley & Vere-Jones, 2003). The left plots in Figure 4show simulations of planar Poisson-gamma processes within [0; 1]2, with k(c; �)the density of N2(c; 0:001I) and (�; �) equal to (15; 0:1) (upper left panel) or(7:5; 0:05) (lower left panel). The simulations are generated as described later,using a truncated random intensity � \ (Wext � (�;1)), where Wext � W isan extended window and � > 0 is a user-speci�ed parameter. The right plotsin Figure 4 show the corresponding realisations of � \ (Wext � (�;1)). Notethat the intensity � = �� is the same for the two sets of parameter values. Withthe small values of � and 
 we obtain fewer and larger clusters than when thelarger values are used.The class of SNCP's is often closed under the basic operations of pointprocesses. More precisely, a �-thinned SNCP, where � is constant, is obviouslya SNCP. Further, a displaced SNCP is itself a SNCP with��(u) = X(c;
)2�
 Z k(c; v)pv(u� v) dv:In the case of normal densities k(c; �) � Nd(c; !2I) and pv(�) � Nd(0; �2I), thedensity u 7! R k(c; v)pv(u� v) dv reduces to that of Nd(c+ v; (!2+�2)I). Fur-thermore, the superposition of two SNCP's, speci�ed by independent Poissonprocesses with intensity functions � respective ~� and the same kernels k(�; �), isa SNCP speci�ed by the Poisson process with intensity function � + ~� and thekernels k(�; �).For the simulation of a SNCP within a bounded region W � Rd , edgee�ects may occur since the Poisson process � in (5) may be in�nite, and soclusters associated to centre points outside W may generate points of the shotnoise Cox process within W . There is a perfect simulation algorithm whicheliminates this problem (Brix & Kendall, 2002 and M�ller, 2003b). However,from a practical view point, it su�ces to use results for the error made when� is replaced by �trunc = � \ [Wext � (�;1)], where Wext �W and � > 0, seeM�ller (2003b) and M�ller & Waagepetersen (2003). For example, in Figure 4where W = [0; 1]2, we use the truncation � = 0:0001 and the extended windowWext = [�0:25; 1:25]2.Finally, conditional simulation of �trunc givenXW is also discussed in M�ller(2003b) and M�ller & Waagepetersen (2003).c
(2005) J. Stat. Res. Iran 2 11
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Figure 4. Left: simulations of Poisson-gamma processes (see text for details). Right: corre-sponding realisations of � \ (Wext � (�;1)) (only points (c; 
) with 
 > 0:02 are shown).
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J. M�ller 944.4 Permanent ProcessConsider a bounded Borel set W � Rd , and let � denote the distribution of thehomogeneous Poisson process with intensity one. The density of a Cox processrestricted to W and with respect to � isf(x) = ejW jE(e� RW �(u) duYu2x�(u)) ;for �nite subsets x of W . In general this density is not of "known" form. Oneexception is a mixed Poisson process driven by a gamma distributed randomintensity, but as noticed this model is rather uninteresting for real applications.Recently, McCullagh & M�ller (2005) introduced a large model class of pointprocess models, the permanent process, where both the density of the processand the product densities are of a known form. This section considers thesubclass of permanent processes, which are also Cox processes.The driving process of such a Cox process is de�ned for any positive integerk and real covariance function C(u; v); u; v 2 Rd by�(u) = 	1(u)2 + : : :+	k(u)2; u 2 Rd (8)where (	j(u))u2Rd; j = 1; : : : ; k are independent zero-mean Gaussian pro-cesses with covariance function C2 . As we shall see, both product densities andthe density of XW are expressed in terms of a weighted matrix permanent,explaining why X is called a permanent Cox process with parameters � = k2and C. The boson (or photon) process (Macchi (1971, 1975), Grandell, 1976and Daley & Vere-Jones, 2003) corresponds to � = 1. Another special case isthe mixed Poisson process obtained when C(u; v) = c is constant and hence�(u) � ( c2 )�2(k) does not depend on u 2 Rd .Clearly, the permanent Cox process is stationary if and only if we cantake C(u; v) = C(u � v), and it is moreover isotropic if and only if we cantake C(u; v) = C(ku � vk). Figure 5 shows simulations of planar permanentCox processes within [0; 1]2, with � = 12 and exponential covariance func-tion C(u; v) = 300 expn�ku�vk0:14 o (left plot) or Gaussian covariance functionC(u; v) = 300 expn�ku�vk20:01 o (right plot). The associated simulated intensityfunctions are also shown.The following results are veri�ed in McCullagh & M�ller (2005), but �rst weneed to introduce some notation. For any points x1; : : : ; xn 2 Rd , the symbol[C](x1; : : : ; xn) denotes the n�n matrix with entries C(xi; xj). The �-weightedpermanent isper�[C](x1; : : : ; xn) =X� �#�C(x1; x�(1)) � � �C(xn; x�(n));c
(2005) J. Stat. Res. Iran 2 13
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93 Properties of Spatial Cox Process Models

Figure 5. Simulations of permanent Cox processes with exponential (left) and Gaussian(right) correlation functions. The associated simulated random intensity functions are shownin grey scale.where the sum is over all permutations of 1; : : : ; n and #� is the number ofcycles. The usual permanent corresponds to � = 1 (Minc 1978). Weightedpermanents are symmetric functions, and it is often convenient just to writeper�[C](x) for a �nite set x = fx1; : : : ; xng � Rd of n points. Moreover, we setper�[C](;) = 1.We have �(n)(u1; : : : ; un) = per�[C](u1; : : : ; un): (9)Thus �(u) = �C(u; u); g(u; v) = 1 + cor(u; v)2� ;where cor(u; v) = C(u;v)fC(u;u)C(v;v)g 12 is the correlation function. Consequently,g > 1. In particular, g ! 1 as �!1, which is to be expected, since X can beviewed as the superposition of k independent copies of the permanent processwith parameter k = 1. In some sense the process becomes close to a Poissonprocess as �!1, since �(u)� converges almost surely to C(u; u).In order to specify the density of XW , we make the following assumptions.Suppose that W is compact and the restriction of the covariance function C toW �W is a continuous function. Then by Mercer's theorem (e.g. Dieudonn�e,1969), the covariance function has spectral representationC(u; v) = 1Xr=0 �rer(u)er(v); u; v 2W14 c
(2005) J. Stat. Res. Iran 2
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J. M�ller 92with absolutely and uniformly convergence in W �W . Here the eigenvaluessatisfy �0 > �1 > : : : > 0, and the eigenfunctions er form an orthonormal basisof L2(W ), the space of square integrable real Borel functions on W with theinner product hp; qi = RW p(u)q(u) du. We can therefore take	j(u) = 1Xr=0 Vj;rer(u); u 2W (10)where the Vj;r are independent N(0; �r2 )-distributed random variables. It isconvenient to introduce ~�r = �r(1 + �r) ; r = 0; 1; : : :and ~C(u; v) = 1Xr=0 ~�rer(u)er(v); u; v 2Wwhich in fact is a well-de�ned and continuous covariance function. Further,de�ne (~�(u))u2W and ~XW in the same way as above for (�(u))u2W and XWexcept that we replace C by ~C. Furthermore,D � 1Xr=0 log(1 + �r) = � 1Xr=0 log(1� ~�r)is well-de�ned, since 0 6 log(1 + �r) 6 �r and P�r < 1. Then XW hasdensity f(x) = ejW j��D per�[ ~C](x): (11)Many other appealing properties are established in McCullagh & M�ller(2005). In particular, the density (11) can be extended to the noninteger caseof 2� > 0 and the case where C is de�ned in terms of a nonnegative symmetricfunction ~C in a somewhat similar way as above (such extensions seem not tobe Cox processes). For the extended process, the product densities are still ofthe form (9).Moreover, as for LGCP's, edge e�ects are not a problem, at least for per-manent Cox processes, cf. (8). From (8) we also obtain that the class of perma-nent Cox processes is closed under independent thinning and superpositioning.Speci�cally, an independent �-thinning is a permanent process with param-eters � and p�(u)�(v)C(u;v)2 . Further, the superposition of two permanentprocesses with parameters � respective �0 but the same C is a permanent pro-cess with parameters � + �0 and C. On the other hand, random independentc
(2005) J. Stat. Res. Iran 2 15
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91 Properties of Spatial Cox Process Modelsdisplacements of the points in a permanent process create a more complicatedpoint process.Simulation of the permanent Cox process within W is straightforward oncewe have simulated the Gaussian processes in (8), e.g. by using (10). To thebest of my knowledge, algorithms for simulation from �(u)u2W jXW have yetnot been investigated. Finally, for the computational problem of calculatingpermanents, we refer to McCullagh & M�ller (2005) and the references therein.AcknowledgmentsI am grateful to Professor Mohammad Q. Vahidi-Asl for his kind invitationof submitting this paper to the Journal of Statistical Reseach of Iran. Mycolleague Rasmus Waagepetersen is acknowledged for providing the softwarefor the simulations. This research is funded by the Danish Natural ScienceResearch Council. ReferencesAdler, R. (1981). The Geometry of Random Fields, Wiley, New York.Baddeley, A; Gregori, P.; Mateu, J.; Stoica, R.; Stoyan, D. (2006). Case Studies in SpatialPoint Process Modeling. Springer Lecture Notes in Statistics 185, Springer-Verlag, NewYork.Baddeley, A.; M�ller, J.; Waagepetersen, R. (2000). Non- and semi-parametric estimation ofinteraction in inhomogeneous point patterns. Statist. Neerlandica 54, 329-350.Baddeley, A.; Turner, R.; M�ller, J.; Hazelton, M. (2005). Residual analysis for spatial pointprocesses (with discussion), J. Roy. Statist. Soc. Ser. B 67, 617-666.Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. Appl.Probab. 31, 929-953.Brix, A.; Chadoeuf, J. (2002). Spatio-temporal modeling of weeds and shot-noise G Coxprocesses, Biol. J. 44, 83-99.Brix, A.; Diggle, P.J. (2001). Spatio-temporal prediction for log-Gaussian Cox processes. J.Roy. Statist. Soc. Ser. B 63, 823-841.Brix, A.; Kendall, W.S. (2002). Simulation of cluster point processes without edge e�ects.Adv. Appl. Probab. 34, 267-280.Brix, A.; M�ller, J. (2001). Space-time multitype log Gaussian Cox processes with a view tomodelling weed data. Scand. J. Statist. 28, 471-488.16 c
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