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Abstract. Spectral analysis considers the problem of determining
(the art of recovering) the spectral content (i.e., the distribution of
power over frequency) of a stationary time series from a finite set
of measurements, by means of either nonparametric or parametric
techniques. This paper introduces the spectral analysis problem,
motivates the definition of power spectral density functions, and
reviews some important and new techniques in nonparametric and
parametric spectral estimation. We also consider the problem in
the context of multivariate time series.
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1 Introduction

Time series analysis is permeated with both engineering and statistical concepts
and terminology, the former being associated with the “spectral” or “frequency
domain” approach, and the latter with the “correlation” or “time domain” ap-
proach, to the analysis of time series. Many statisticians find it difficult to
work with the ideas of energy, power and frequency, while engineers may find
it equally different to challenge with the statistical inference. In this paper we
have chosen to emphasize the spectral approach to time series. Spectral anal-
ysis considers the problem of determining the distribution of total power over
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frequency, and the spectral estimation problem tries to estimate this distribu-
tion from a finite record of a data sequence, by means of either nonparametric
or parametric techniques.

Spectral analysis have applications in many diverse fields. In economics,
meteorology, astronomy and geology the spectral analysis may reveal hidden
periodicities, which are to be associated with cyclic behavior or recurring pro-
cesses. In radar and sonar systems, the spectral contents of the received signals
provide information on the location of the sources (or targets) situated in the
field of view. In medicine, spectral analysis of various signals measured from
a patient, such as electrocardiogram (ECG) or electroencephalogram (EEG)
signals, can provide useful material for diagnosis. In seismology, the spectral
analysis of the signals recorded prior to and during a seismic event (such as
a volcano eruption or an earthquake) gives useful information on the ground
movement associated with such events and may help in predicting them. Seis-
mic spectral estimation is also used to predict subsurface geologic structure
in gas and oil exploration. In control systems, there is a resurging interest in
spectral analysis methods as a means of characterizing the dynamical behav-
ior of a given system. In hydrology, the effect of monitoring time intervals on
computed hydrologic delay times of the karstic system is important for analysis
and study of behaviors of different karstic hydrological systems. The previous
and other applications of spectral analysis are reviewed in Kay (1988), Marple
(1987), Bloomfield (1976), Bracewell (1986), Haykin (1991), Haykin (1995),
Koopmans (1974), Priestley (1989), Percival and Walden (1993), Porat (1994),
Scharf (1991), Therrien (1992), Proakis et al. (1992), Larson et al. (2003),
Scargle (1997), Jakowatz, et al. (1996), DeGraaf (1998), Gini and Lombardini
(2002), Rahnemaee et al. (2005), and Stoica and Moses (1997, 2005).

The history of spectral analysis as an established discipline started more
than one century ago with the work by Schuster (1898) on detecting cyclic be-
havior and hidden periodicities in time series, and so he called his statistics the
periodogram. Marple (1987) notes that the word “spectrum” was apparently
introduced by Newton in relation to his studies of the decomposition of white
light into a band of light colors, when passed through a glass prism. This word
appears to be a variant of the Latin word “specter” which means “ghostly ap-
parition”. The contemporary English word that has the same meaning as the
original Latin word is “spectre” (Stoica and Moses, 1997). For more informa-
tion about spectral analysis one can refer to Marple (1987), Kay (1988), Sto-
ica and Moses (1997), Priestly (1989), Brockwell and Davis (1991), Brillinger
(1981), Chatfield (1975), and Stoica and Moses (2005).

In general, the methods of estimation of the spectrum can be grouped into

two categories: non-parametric methods and parametric methods (see Stoica
and Moses, 2005; Priestley, 1989; and Brockwell and Davis, 1991). The AR and
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ARMA spectral estimates and the maximum entropy methods of estimation
come into the second category, i.e. parametric methods. Here the spectrum
is estimated via a model and the main problem is the identification of the
model given the data. Windows (kernel) estimates are non-parametric. Here
the main problems involved are the choice of bandwidth and the choice of a
suitable windows.

This paper introduces the spectral analysis problem, motivates the defi-
nition of power spectral density functions, and reviews some important and
new techniques in nonparametric and parametric spectral estimation. We also
consider the problem in the context of multivariate time series.

2 Preliminaries

Let {X;} be a discrete parameter, zero mean and real stationary time se-
ries and let E|Xt\2 < oc, t € 7, where 7 stands for all integers. Suppose
R(r) = E(X;X:ty,), T € Z, is the autocovariance function of X; satisfying
> |R(7)| < 00. The power spectral density function of {X;} is defined by

T=—00

> R(r)exp{—iwr}, -c0o<w< o (1)

T—=—00

1

hw) = 5
where w, number of radians per unit times, is sometimes called the angular
frequency, but in keeping with most authors we will simply call w the frequency.
Some authors refer to frequency as f = w/2m, number of cycles per unit time,
since it is much easier to interpret from a physical point of view. Here, we will
usually use w, angular frequency, in mathematical formulas for conciseness,
and use f, frequency, for the interpretation of data. The period is clearly T =
2r /w = 1/ f. The absolute summability of R(7), (3.7~ |R(7)| < c0), implies
that the above series converges absolutely and h(w) is a bounded uniformly
continuous function. It is easy to show that h(w) is non-negative, even, and
also a periodic function with period 27. Hence h(w) is completely described
by its variation in the interval w € [0, 7]. Also the relation (1) may be inverted
and the autocovariance function R(7) expressed as

R(r) = ’ h(w) exp{iwT }dw, TEL (2)

In particular, setting 7 = 0 give

R(0) = var(X;) = ’ h(w) dw. (3)

-7
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The adjective power, which is sometimes prefixed to spectral density func-
tion derives from the engineer’s use of the word in connection with the passage
of an electric current through a resistance. For a sinusoidal input, the power
is directly proportional to the squared amplitude of the oscillation. For a
more general input, the power spectral density describes how the power is dis-
tributed over frequency. Mathematically, the area under h(w) represent the
average power, as indicated by (3), (Chatfield, 1975). Therefore h(w) is a
density function (power per unit of frequency) that represents the distribution
of power with frequency (Brillinger, 1981). The term power spectral density
function is often shortened to spectrum. Note that, the physical meaning of
the spectrum is that h(w)dw represents the contribution to variance of com-
ponents with frequencies in the range (w,w + dw). According to equation (3),
the total area underneath the curve is equal to the variance of the process. A
peak in the spectrum indicates an important contribution to variance at fre-
quencies in the appropriate region. Note that the autocovariance function and
the spectrum are equivalent ways of describing a stationary stochastic process.
From a practical point of view, they are complementary to each other. Both
functions contain the same information, but express it in different ways. In
some situations a time-domain approach based on the autocovariance function
is more useful while in other situations a frequency-domain approach based on
spectrum is preferable.

3 Nonparametric Methods

A common spectral estimator is based on a function called periodogram. One
of the first uses of periodogram has been in determining possible hidden pe-
riodicities in time series, which may be seen as a motivation for the name of
this method (Schuster, 1898). The basic ideas underlying periodogram analysis
may be explained heuristically as follows. For each positive integer n define

. 2
ho(w)=—F

=5 ZXt exp{—itw} (4)
t=1

It can be shown that h,(w) — 5= > R(r)exp{—iwt} = h(w) as

2 T—=—00
n — oo (see Brockwell and Davis, 1991, p. 343). So I,,(w) = L ‘Z?:l Xpe~itw ‘2,
which is called periodogram, is asymptotically unbiased estimator of 27h(w),
a natural estimate.
Let I,(w) = L+ [0, X, exp{—z’tw}|2 be the periodogram of data set
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{X1,Xs,...,X,}. Then for each w, we may write I,,(w) in the alternative form

2

N

b

&
[
|

1 n

Z X; exp{—itw}
n

t=1

= % (Z X, exp{—itw}) (Z X, exp{irw})
= Z R(7) exp{—itw}, T=t—r
= R(0) +2 i: R(r) exp{—iTw}, T=t—r (5)

where R(7) is the (biased) sample autocovariance function of R(7) at lag 7, i.e.

n—|7|

E(T) = % Z XtXt+\7—\~ (6)

From (5) we have that the periodogram is the discrete Fourier transform of the
complete sample autocovariance function. The striking resemblance between
(5) and the expression h(w) = 5= Y77 R(7)exp{—iwr} for the spectral den-
sity of a stationary time series with >°°7 _ |R(7)| < oo suggests the potential
value of the periodogram for spectral density estimation (indeed, if the sample
autocovariance function, R(t), of the observations {Xi, Xs,...,X,} can be
regarded as a sample analogue of R(1), so can the periodogram, I,(-), of the
observations be regarded as a sample analogue of 27h(w).

A critical disadvantage of the periodogram as an estimate of the power
spectrum h(w) is that its variance is approximately h?(w), under reasonable
regularity conditions, even when based on a lengthy stretch of data (Brillinger,

1981). In particular, for each w € [0, 7], and € > 0,

P (|I,(w) = 27h(w)| > &) — p > 0,

as n — oo. This means I,(w) is not a consistent estimator of 2wh(w). Thus
I,(w) is an asymptotically unbiased estimator of 2rh(w), but of course, it is not
consistent. So no matter how large n is taken, the variance will tend to remain
at the level h?(w), (the variance does not decrease as n increases), and if an
estimate with a variance smaller than this is desired, it is not to be obtained
by simply increasing the sample length and continuing to use the periodogram.

The lack of consistency is perhaps not too surprising, because the graph of
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the periodogram usually fluctuates wildly. So for a process with a continuous
spectrum, the periodogram provides a poor estimate and needs to be modified.

One way of obtaining an expression with a reduced variance is simply to
omit some of the terms in (5). If we do this, we will certainly reduce the
variance, but on the other hand the terms omitted will affect the expected
value of the new expression, and the general effect will be to increase the bias.
However, we know that if the process has a purely continuous spectrum, then
R(r) — 0, as |T| — o0, and hence if we omit only those terms which correspond
to the tail of the sample autocovariance function, then hopefully the bias will
not be affected too seriously. These ideas suggest that we might consider as an
estimate of h(w) an expression of the form

M

ho(w) = — Y R(r)exp{-itw}, (7)

where M (< n) is some integer whose precise value is as yet unspecified, and
is called the truncated point or bandwidth (Priestley, 1989). The precision of
the ﬁ(r) decreases as 7 increases, so that it would seem intuitively reasonable
to give less weight to the values of ﬁ(r) as T increases. An estimator with this
property is

- 1 X ~
h(w)zﬂ Z AMT)R(T)exp{—itw}, (8)

T=—M

where {\(7)} is a set of weights called the lag windows. The reason for this
rather unusual terminology stems from the fact that we often think A(7) as
being effectively zero outside a small interval, say (—e¢,¢), and hence the sum-
mation (8) may be regarded as giving a view of R(7)exp{—irw} through a
narrow window. The term window was first introduced by Blackman and
Tukey (1959). The lag window is an even, piecewise continuous function of
A satisfying the conditions A(0) = 1, |A(7)] < 1 for all 7, and A(7) = 0 for
|7| > M. Also the bandwidth M satisfy M — oc and M/n — 0 as n — oo,
which simply mean that the number of terms in the weighted series (8) goes
to oo as n — oo, while at the same time the width of the frequency interval
over which the average is taken goes to zero. The estimator h(w) given by (8)
is called the lag window spectral density estimator.

In order to use the above estimator, we must choose a suitable lag window
and a suitable truncation point. Some lag windows which are in common use
today are:
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i) The truncated or rectangular window:
1 <M
)\(T) — ? ‘T‘
0, |7|>M

Here, all the autocovariances up to lag M are given equal weight.
Using this window, (8) reduces to (7).

i) The Bartlett or triangular window:

1- <M
A(T) — M |T|
0, 7| > M

Here, we apply linearly decreasing weights to the autocovariances up
to lag M and zero weights thereafter.

i41) The Tukey-Hamming or Blackman-Tukey window:

0.54 4+ 0.46 = <M
A7) = + cos (55), |7]
0‘, |T| > M

iv) The Parzen window:

= 1—|7
AT =92 (45 Ml <M
0 |7| > M

v) The Bartlett-Priestly window:

AMr) = % (% — cos (%)) .

The Bartlett-Priestly window was derived by minimizing an approxi-
mate expression for the relative mean square error of the estimated
spectral density function with respect to the functional form of the
window (Priestley, 1962; Bartlett, 1963). Priestly showed that this
window is optimal within a somewhat restricted class of windows, but
its optimality with respect to the relative mean square error was later
established more generally by Epanechnikov (1969).
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The choice of the truncation point (bandwidth), M, is rather difficult and
little clear-cut advice is available in the literature. The smaller the value of
M, the smaller will be the variance of h(w), but the larger will be the bias. If
M is too small, important features may be smoothed out, while if M is too
large, the behaviour of A(w) becomes more like that of periodogram with erratic
variation, i.e.

as M1, variance T, bias |; as M|, variance |, bias |

(see Priestley, 1989, p.517). Thus a compromise value must be chosen. A
useful rough guide is to choose M to be about 24/n. This choice of M ensures
the asymptotic situation that as n — oo, so also does M — oo but in such a
way that M/n — 0. But, as Hannan (1970, p. 311) says, experience is the real
teacher and that cannot be got from a book.

The above methods are based on transforming the sample autocovariance
function. An alternative approach is to smooth the periodogram by sim-
ple grouping the periodogram ordinates in a set and finding their average
value. This approach is based on a suggestion by Daniell in 1946. It can be
shown that for large n the periodogram ordinates at fixed frequencies (I, (w;),
where w; = 2mj/n) are approximately independent with variances changing
only slightly over small frequency interval. So we might hope to construct a
consistent estimator of h(w) by averaging the periodogram estimates in a small
frequency interval containing w (just as we obtain a consistent estimator of a
population mean by averaging the observed values in a random sample of size
n). For example, consider a simple moving average filter by smoothing the
series {1, (w;)}, i.e., (1/27) 32 < pr{1/(2M + 1)} (wj4x), or more generally,

R = 5= 3 Walb) (i) (9)
e[ <M

where in order this estimate to be consistent, we must impose the following
conditions on {W,(-)}.

i) Z\k\gM Wa(k) =1,
ii) 3 <m Wi(k) =0,  asn— oc.
The conditions on {W,,(-)} ensure that the mean and variance of h(w) converge

to h(w) and 0, respectively, as n — oco. The estimator h(w) given by (9) is called
a discrete spectral average estimator of h(w).
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The above methods were proposed originally for estimating the spectral
density function of a stationary process whose spectrum is absolutely contin-
uous. However, in recent years spectral estimation has been used with the
objective of estimating the line spectrum of a signal observed in the presence
of white noise. These considerations have led engineers to look for spectral es-
timates with high resolution, since spectral peaks with narrow bandwidths may
correspond to the presence of periodicities in the signal. Mewes and Dermiihl
(2001) consider the time series

X; = 0.1 x sin(27 x 100t) 4 sin(27 x 200t) + sin(27 x 210t) + &4,

where {e;} is a sequence of uncorrelated random variables, each with zero
mean and variance 1. Such a sequence is referred to as white noise and is
denoted by e, ~ WN(0,1). They compared the true spectral density function
of X; with four estimates: periodogram with a sample size n = 64, n = 2048,
and a discrete spectral average estimator using Hamming and rectangular lag
windows with a sample size n = 1000. They observed that the classical methods
(using periodogram) for estimating the spectrum (specially when the sample
size is small) have not enough precision and they are not able to distinguish
two strong peaks from each other. Larson et al. (2003) have also presented
numerical examples showing these difficulties.

Two particular estimates for solving this problem are given by Capon (1969)
and Pisarenko (1972), and these are widely used in signal processing problems.
The Capon method is a classical spectral analysis method that has also, some-
what incorrectly, been referred to as a maximum likelihood spectral estimator,
for more details, see Capon (1983), Stoica and Moses (2005), Marple (1987)
and Kay (1988). These estimates, though frequently cited in the engineering
literature, are less familiar to time series analysts. The fastest available tech-
nique for the computation of the Capon spectra is that of Larson and Stoica
(2002). In Li et al. (1998) the bias and variance of Capon and several esti-
mators have been compared. For more information refer to Jakobsson (2000),
Jakobsson et al. (2000) and Ekman et al. (2000). Subba Rao and Gabr (1989)
discussed the motivation for the Pisarenko estimator, using the properties of
circular symmetric matrices, and considered its relationship with Capon’s high
resolution estimator. They considered the estimator,

1

- 2mn

b (w) ZZR(L‘— s)exp{—i(t — s)w}, (10)

t=1 s=1

which is asymptotically equivalent to estimating h(w), (and called h,(w) the
“truncated spectral density function”). They showed that h,,(w) can be written
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as

(n—1)/2
1
hn =— | Aodn M2i + Anoic1)Ano; , 11
(w) = 0Ano(wr) + ; (An2j + An2j—1)Anzj(wi) |, (11)
where A, o(wi) = (2/n)27F,—1(w1), Anoj(wi) = Apgj_1(w) = (1/n){27F,_1 (w;+
wi) + 2rF,_1(w; —wp)}, and Ao, Ana,...5 A, are the eigenvalues of the
Toeplitz matrix R,, given by

R(0) R(1) . R(n—1)
R(~1) RO) - R(n-2)

R, = : : :
R(-(n—1)) R(-(n—-2)) - R(0)

Note that F,(6) is the Fejér kernel (e.g. Priestley, 1989) and is given by

1 sin? (”79)

S s (1)

In finding the estimator (11), they used the asymptotic equivalence of R,
with a related circular symmetric matrix which is well-known (e.g. Gray, 1972).
Note that h,(w;) is a smoothed version of the eigenvalues of R,, and the
smoothing function (lag window) is the Fejér kernel, it is linear in the eigenval-
ues A, ; and that A, ;(w;) does not depend on the process. This suggests that
these eigenvalues can be replaced by any non-linear function of A, ; and by
suitably defining an inverse function we can, in the limiting form, recover the
original spectrum. To be more precise, consider a strictly monotone continuous
function G(-) over the interval (0,00) and let g(-) be an inverse function, i.e.
g(G(x)) = z. Then we can consider the function

n—1
hnp(@) =g | Y GOnj)An (@) |, (12)
=0

as an approximation to h,(w). In fact, this is the way that Pisarenko (1972)
derived his estimate, and (12) is the theoretical form of the general Pisarenko
estimate. Note that (12) must be multiplied by an appropriate scale factor
to recover h,(w), and that this factor is dependent to the form of G(-). In
its general form (12) also includes the theoretical form of the high resolution
estimator of Capon (1969). To obtain this, substitute G(z) = =~ ! in (12).
Then we obtain
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-1

n—1
1
hnplwr) = — SO A )] (13)
=0

The theoretical form of Capon’s estimator is given by

1
hn,Cap (wl) = ;hﬂ,P(wl)

-1

1 n—1
== SN )] (14)
7=0

Note that Capon (1969) defined the theoretical form of his minimum vari-
ance spectral estimator as (27 /n)h, cap(wi). So, it is clear that the estimator
defined by Capon (1969) does not strictly qualify as a power spectral density.
Further remarks and details are given in Larson et al. (2003).

4 Parametric Methods

The principal difference between the spectral estimation methods of Section 3
and those in this section, is that in Section 3 we made no assumption on the
studied time series (except for its stationarity). The parametric or model-based
methods of spectral estimation assume that the time series satisfies a gener-
ating model with known functional form, and then proceed by estimation the
parameters in the assumed model. The spectral density are then derived from
the estimated model. In those cases where the assumed model is near to the
reality, the parametric methods provide more accurate spectral estimates than
the nonparametric techniques. The nonparametric approach remains useful,
where there is little or no information about the time series model in question.

In parametric methods, the spectral density estimator is usually obtained
by fitting an ARMA model to the data and then the spectral density of the
fitted model is computed. Provided there is an ARMA model that fits the data
satisfactorily, this procedure has the advantage that it can be made systematic
by selecting the model according, for example, to a bias-corrected version of the
AIC (the information criterion of Akaike) known as the AICC (Akaike, 1973a).

In this way, the pth order autoregressive estimator Ep(w) of the spectral
density of a stationary time series {X;} is the spectral density of the autore-
gressive process {Y;} defined by

Y=o Yi1— = bppYe p =21,  {Zi} ~ WN(0,7,) (15)
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where ¢, = (dp1, - ., bpp) and T, are the well-known Yule-Walker estimators
of the coefficient vector ¢, = (dp1, ..., dpp)" and white noise variance o2 from
AR(p) model: Yy — ¢p1Yio1 — -+ — ¢ppYi—p = Zy, respectively. Then

- B, - ‘ - -2

hp(w) = o 1 — ¢p1exp{—iw} — - — ¢pp exp{—ipw} . (16)

The choice of p for which the approximating AR(p) process “best” represents
the data can be made by minimizing AICC. The pth order autoregressive es-
timator h,(w) defined by (16) is the same as the maximum entropy estimator,

i.e. the spectral density h which maximizes the entropy,

E:/ In g(w)dw,

-7

over the class of all densities ¢ which satisfy the constraints,

/ exp{—iwt }g(w)dw = E(T), T=0,+1,...,+p
(see Brockwell and Davis, 1991).

In the definition (16) it is natural to consider replacing the Yule-Walker
estimates EEP and v, by the corresponding maximum likelihood estimates. Also,
there is no need to restrict attention to autoregressive models, and there are
processes for which autoregressive spectral estimation performs poorly. Spectra
with both sharp peaks and deep nulls cannot be modeled by either AR or MA
equations of reasonably small orders. It is in these cases that the more general
ARMA model is valuable. The practical ARMA estimators are computationally
simple and often quite reliable, but their statistical accuracy is in some cases
poor. See Byrnes et al. (2000, 2001) for some results on ARMA parameter
estimation. To deal with cases of this kind we can use the estimate suggested
by Akaike (1973b), i.e.

N N 2

N 52 ‘1 + 01 exp{—iw}+ -+ 0, exp{—iqw}‘
h(w) = % : N N 2 (17>
‘1 — ¢rexp{—iw} — - — ¢, exp{—ipw}

where $: (¢?1., cel ¢Tp)’ and 6 = (@\1, .. .,gq)’ and 02 are maximum likelihood
estimates of an ARMA(p, ¢) process fitted to the data, with p and ¢ chosen
by AICC. The estimate ?L(w) is called the maximum likelihood ARMA (or
MLARMA) spectral density estimate. A simple but less efficient estimator than
(17) which is particularly useful for processes whose MA(cc) representation has
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rapidly decaying coefficients is the moving average estimator (Brockwell and
Davis, 1991) given by

=2

~ v ~ . 2
he(w) = ﬁ |14+ 041 exp{—iw} + -+« + 044 exp{—iqw}| , (18)
where 6, = (gql, e ,@\qq)’, and 07 are the innovation estimates. The advantage

of both estimators (16) and (18) over the MLARMA estimator is the sub-
stantial reduction in computation time. Moreover, under specified conditions,
the asymptotic distributions of the autoregressive and moving average spec-
tral density estimators can be determined for a large class of linear processes
(Brockwell and Davis, 1991).

An indirect but computationally efficient method with numerical results is
given by Stoica et al. (2000) and Dumitrescu et al. (2001).

5 Multivariate Case

In this section we consider the estimation of the spectral density function
of a vector-valued series. The approach in multivariate case is based on the
properties of the eigenvalues of block-Toeplitz matrices, and is similar to the
approach given by Subba Rao and Gabr (1989) and heavily based on the re-
sults of Hannan and Wahlberg (1989). Let {X;, t € Z} be zero mean vec-
tor, discrete-parameter, and second order T-dimensional stationary series with
X:(j), 5 =0,...,T—1, as its jth element, and R(7) = E(X:1.X}) ,7 € Z, be
the autocovariance matrix of X; . We agsume that the series has an absolutely
continuous spectrum and let h(w) = [h;x(w)];k=01,..,7—1, denote its spectral
density matrix, i.e., let

hjr(w) = % Z R (1) exp{—iwt}

T=—00

where R, (7) = EXy4-(7) X (k), (4, k =0,1,...,T —1) is the (j, k)-th element
of R(7). Equivalently, we may write

1 [e e}
h(w) = 5 Z R(r)exp{—iwt}, 0w 2n

T——oc

Let {X1,Xo,..., X, } be a sample of size n from {X;}. A natural estimator

of the cross-covariance R;j(7) is

Ejk(T) = %ZXt+T(J)Xt(k) T = 0,:':17 .- 7:f:(’I”L — 1)
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where the summation is from ¢ =1to (n —7), 7 > 0, and from ¢t = (1 — 7)
ton, 7 < 0. It can be shown that (Priestley, 1989)

B{R (1)} = Ru(r) +0 (1),

where “f(x) = O(g(z))” denote the existence of a constant C, such that
|f(z)| < Cg(x) for all .

Let I,(w) = [In,jk(w)]; k=0,...,7—1 be the periodogram matrix with (j, k)-th
element

L k(W) = &x; (w)ex, (W),

where

&x; (w

Xi(y) exp{—iwt}, ) =0,...,T—1
Moz Z i(j) exp{—iwt}, ]

denotes the finite Fourier transform of Xy(j), (for j = k, I, ;; is simply the
periodogram of X,(j), and for j # k, I,, ;i is the cross-periodogram between
Xt(]) and Xt(k)) Then

n n

ZRJ’* (t — s)exp{—i(t — s)w}
1

t=1 s=
= hn jk(w), say. (19)

1

E{In i (w ~ 9

In matrix form, under some regularity conditions on h(w), (Priestley, 1989),
we can write

n n

1

E{l,(w)}= - ZR (t — s)exp{—i(t — s)w} (20)
=h, w)., say, (21)
h(w )+o<1"i”>, (22)

where O(-) = O(-)1,1!, with 1,,= (1,1,...,1). We shall call h,(w) the trun-
cated spectral density matriz.

Thus I,,(w) is an asymptotically unbiased estimator of h(w), but of course
it is not consistent (Brillinger, 1981). In order to find a consistent estimator of
h(w), the usual procedure is to smooth the periodogram by a suitable kernel

120 © 2005, SRTC Iran


https://jsri.srtc.ac.ir/article-1-155-en.html

[ Downloaded from jsri.srtc.ac.ir on 2025-11-29 ]

A. R. Nematollahi Yof

(Brillinger, 1981). Nematollahi and Subba Rao (2005) showed that the theo-
retical spectral density matrix h(w) can be written in terms of the eigenvalues
of the variance-covariance matrix, then one can estimate h(w) using the eigen-
value decomposition of the sample variance-covariance matrix and show that
it intrinsically makes use of Fejér kernel type of weight functions.

More precisely, define a nT x 1 vector X,, = (X!, X! _;,...,X]) and let
I, = EX, X/, be its variance-covariance matrix. We have
R(0) R(1) ++ R(n-—1)
R(-1) R(0) ++ R(n—2)
r, = ) ) )
R(-(n—-1)) R(-(n-2)) -~ R(0)

We note that T',, is a block-Toeplitz matrix. Individual matrix elements are
not, in general, symmetric (R(7) # R/(7)), although R(—7) = R/(7).

Nematollahi and Subba Rao (2005) derived the following expression for
estimation of spectral density matrix h(w).

h,(w;) = pp Z A, (wj,wr), (23)
j=0
with
A, (wj,w) = % Z Z W (W) A (wj) W (w;) exp{—i(t — s)w; }, (24)

where A, (w,) is an “eigenvalue-matrix” of T',,, and W, (w,) is an “eigenvector-
matrix” associated with A, (w;), (clearly, they are not the eigenvalue and the
eigenvector in the usual sense). In finding the estimator (23), they used the
asymptotic equivalence of R,, with a related circular symmetric matrix which
have been proved in the multivariate case by Nematollahi and Shishebor (2005)
and is a multivariate generalization of the well-known result of Gray (1972).

Nematollahi and Subba Rao (2005) showed that an equivalence form for
h,(w;) given by (23) is

b, (1) = i (3 « 2Pyt (w01) A (w0

n
(n—1)/2
+2 > — A (w2)) {27 F 1 () + i) + 27 1 () - wl)}>, (25)
7=1
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where

5

1 ‘ sin? (”—)

.= A2/
3 S (5)

which is the Fejér kernel. The approximate relation (25) tells us that the
spectral density function h, (w;) is in fact a smooth function of A,,(w;) and the
smoothing function is the well-known Fejér kernel. We observe that h, (w;) is
linear in A, (w;) and that A, (w;,w;) does not depend on the time series {X;}.
Similar to the univariate case, this suggests that these eigenvalue-matrices can
be replaced by any nonlinear function of A, (w;) and by suitably defining an
inverse function, we can, in the limiting form, recover the original spectrum.
Consider a strictly monotonic continuous function G(-) and g(-) be an inverse
function, i.e. g(G(z)) = x. Then we can introduce the function

n—1

hop(en) =g | 30 2B (wy,0) GAn () Bulog) | (26)

J=0

as an approximation to hy(w;), where B, (wj,w;) = >0, W5 (w;) exp{isw; },
and W2 (w;) is the sth block of W,,(w;). In fact, this is a generalization of the
way that Pisarenko (1972) derived his estimate in the univariate case, and (26)
is the generalization of the theoretical form of the Pisarenko’s estimator given
by (12), to the multivariate case. Also, note that (26) must be multiplied by
an appropriate scale factor to recover h,,(w;), and this factor is independent of
the form of G(-).

As we mentioned in Section 3, the high resolution estimation of the spectral
density function given by (14) was introduced by Capon (1969) in the univariate
case. A multivariate generalization and also an explicit expression for the high
resolution spectral density matrix (a generalization of Capon’s estimator) of the
vector series X; are also given by Nematollahi and Subba Rao (2005). They
derived an appropriate minimum variance (MV) spectral estimator with form

-1
b can(@) = = (2L L)) (27)

where L, (w;) = (I, exp{iw }1,. .., exp{niw;}T)" . Tt can be shown that another

) )

theoretical form of generalized Capon’s estimator is given by

-1

n—1
1 ~
hn,Cap(wl> = ; Z An(wj-, wl) 3 (28>
7=0
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where

n n

Rowgen) = = 30 S W () A (@) Wie) exp{ it — sk}, (29)

t=1 s=1

This is a multivariate generalization of the minimum variance spectral (MVS)
estimator due to Capon (1969) or relation (14).

The relationship between the AR and Capon spectra and the extension
of the result to two-dimensional time series can be found in Jakobsson et al.
(2000). The extension of the nonparametric spectral analysis methods to two-
dimensional (2D) time series can be found in Stoica and Moses (2005). They
also provide new interpretations for some of these methods, which are partic-
ularly useful when we want very simple (although somewhat heuristic) deriva-
tions of the methods in question. The 2D spectral analysis finds applications
in image processing, synthetic aperture radar imagery, etc. See Larson et al.
(2003) and the references therein for a review that covers the well-known 2D
methods and their application to synthetic aperture radar. The 2D extensions
of some parametric methods are also discussed in Stoica and Moses (2005).

6 Conclusions

This paper has summarized some main results in the area of parametric and
nonparametric analysis of the spectral estimation problem. We have also dis-
cussed various extensions of the methods, with the extension to the multivariate
time series. Spectral estimation via methods mentioned above is a theme that
can be extended and developed in many ways. The intention is to summarize
some extension and variations of the mentioned methods that have appeared in
the literature. Instead of providing a full treatment of all techniques, we have
referred the reader to the original articles for more details. Although there exist
an abundance of research papers in this area, there are still topics that should
form the subject of future investigations. We have not given an exhaustive list
of open problem, but it seems the most interesting and relevant ones to solve
include finding a fast time-recursive implementation of Capon estimator and
deriving an optimal choice of the truncation point (bandwidth) and windows.
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