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Spectral Estimation of Stationary Time Series:Recent DevelopmentsA. R. NematollahiShiraz University

Abstract. Spectral analysis considers the problem of determining(the art of recovering) the spectral content (i.e., the distribution ofpower over frequency) of a stationary time series from a �nite setof measurements, by means of either nonparametric or parametrictechniques. This paper introduces the spectral analysis problem,motivates the de�nition of power spectral density functions, andreviews some important and new techniques in nonparametric andparametric spectral estimation. We also consider the problem inthe context of multivariate time series.Keywords. spectral density; Capon's estimate; high resolutionestimate; block-Toeplitz matrix; windows.1 IntroductionTime series analysis is permeated with both engineering and statistical conceptsand terminology, the former being associated with the \spectral" or \frequencydomain" approach, and the latter with the \correlation" or \time domain" ap-proach, to the analysis of time series. Many statisticians �nd it di�cult towork with the ideas of energy, power and frequency, while engineers may �ndit equally di�erent to challenge with the statistical inference. In this paper wehave chosen to emphasize the spectral approach to time series. Spectral anal-ysis considers the problem of determining the distribution of total power over
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217 Spectral Estimation of Stationary Time Series . . .frequency, and the spectral estimation problem tries to estimate this distribu-tion from a �nite record of a data sequence, by means of either nonparametricor parametric techniques.Spectral analysis have applications in many diverse �elds. In economics,meteorology, astronomy and geology the spectral analysis may reveal hiddenperiodicities, which are to be associated with cyclic behavior or recurring pro-cesses. In radar and sonar systems, the spectral contents of the received signalsprovide information on the location of the sources (or targets) situated in the�eld of view. In medicine, spectral analysis of various signals measured froma patient, such as electrocardiogram (ECG) or electroencephalogram (EEG)signals, can provide useful material for diagnosis. In seismology, the spectralanalysis of the signals recorded prior to and during a seismic event (such asa volcano eruption or an earthquake) gives useful information on the groundmovement associated with such events and may help in predicting them. Seis-mic spectral estimation is also used to predict subsurface geologic structurein gas and oil exploration. In control systems, there is a resurging interest inspectral analysis methods as a means of characterizing the dynamical behav-ior of a given system. In hydrology, the e�ect of monitoring time intervals oncomputed hydrologic delay times of the karstic system is important for analysisand study of behaviors of di�erent karstic hydrological systems. The previousand other applications of spectral analysis are reviewed in Kay (1988), Marple(1987), Bloom�eld (1976), Bracewell (1986), Haykin (1991), Haykin (1995),Koopmans (1974), Priestley (1989), Percival and Walden (1993), Porat (1994),Scharf (1991), Therrien (1992), Proakis et al. (1992), Larson et al. (2003),Scargle (1997), Jakowatz, et al. (1996), DeGraaf (1998), Gini and Lombardini(2002), Rahnemaee et al. (2005), and Stoica and Moses (1997, 2005).The history of spectral analysis as an established discipline started morethan one century ago with the work by Schuster (1898) on detecting cyclic be-havior and hidden periodicities in time series, and so he called his statistics theperiodogram. Marple (1987) notes that the word \spectrum" was apparentlyintroduced by Newton in relation to his studies of the decomposition of whitelight into a band of light colors, when passed through a glass prism. This wordappears to be a variant of the Latin word \specter" which means \ghostly ap-parition". The contemporary English word that has the same meaning as theoriginal Latin word is \spectre" (Stoica and Moses, 1997). For more informa-tion about spectral analysis one can refer to Marple (1987), Kay (1988), Sto-ica and Moses (1997), Priestly (1989), Brockwell and Davis (1991), Brillinger(1981), Chat�eld (1975), and Stoica and Moses (2005).In general, the methods of estimation of the spectrum can be grouped intotwo categories: non-parametric methods and parametric methods (see Stoicaand Moses, 2005; Priestley, 1989; and Brockwell and Davis, 1991). The AR and108 c
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A. R. Nematollahi 216ARMA spectral estimates and the maximum entropy methods of estimationcome into the second category, i.e. parametric methods. Here the spectrumis estimated via a model and the main problem is the identi�cation of themodel given the data. Windows (kernel) estimates are non-parametric. Herethe main problems involved are the choice of bandwidth and the choice of asuitable windows.This paper introduces the spectral analysis problem, motivates the de�-nition of power spectral density functions, and reviews some important andnew techniques in nonparametric and parametric spectral estimation. We alsoconsider the problem in the context of multivariate time series.2 PreliminariesLet fXtg be a discrete parameter, zero mean and real stationary time se-ries and let E jXtj2 < 1; t 2 Z; where Z stands for all integers. SupposeR(�) = E(X�Xt+� ); � 2 Z; is the autocovariance function of Xt satisfyingP1�=�1 jR(�)j <1: The power spectral density function of fXtg is de�ned byh(!) = 12� 1X�=�1R(�) expf�i!�g; �1 < ! <1 (1)where !, number of radians per unit times, is sometimes called the angularfrequency, but in keeping with most authors we will simply call ! the frequency.Some authors refer to frequency as f = !=2�; number of cycles per unit time,since it is much easier to interpret from a physical point of view. Here, we willusually use !; angular frequency, in mathematical formulas for conciseness,and use f , frequency, for the interpretation of data. The period is clearly T =2�=! = 1=f: The absolute summability of R(�), (P1�=�1 jR(�)j <1), impliesthat the above series converges absolutely and h(!) is a bounded uniformlycontinuous function. It is easy to show that h(!) is non-negative, even, andalso a periodic function with period 2�. Hence h(!) is completely describedby its variation in the interval ! 2 [0; �]: Also the relation (1) may be invertedand the autocovariance function R(�) expressed asR(�) = Z ��� h(!) expfi!�gd!; � 2 Z (2)In particular, setting � = 0 giveR(0) = var(Xt) = Z ��� h(!) d!: (3)J. Statist. Res. Iran 2 (2005): 107-127 109
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215 Spectral Estimation of Stationary Time Series . . .The adjective power, which is sometimes pre�xed to spectral density func-tion derives from the engineer's use of the word in connection with the passageof an electric current through a resistance. For a sinusoidal input, the poweris directly proportional to the squared amplitude of the oscillation. For amore general input, the power spectral density describes how the power is dis-tributed over frequency. Mathematically, the area under h(!) represent theaverage power, as indicated by (3), (Chat�eld, 1975). Therefore h(!) is adensity function (power per unit of frequency) that represents the distributionof power with frequency (Brillinger, 1981). The term power spectral densityfunction is often shortened to spectrum. Note that, the physical meaning ofthe spectrum is that h(!)d! represents the contribution to variance of com-ponents with frequencies in the range (!; ! + d!): According to equation (3),the total area underneath the curve is equal to the variance of the process. Apeak in the spectrum indicates an important contribution to variance at fre-quencies in the appropriate region. Note that the autocovariance function andthe spectrum are equivalent ways of describing a stationary stochastic process.From a practical point of view, they are complementary to each other. Bothfunctions contain the same information, but express it in di�erent ways. Insome situations a time-domain approach based on the autocovariance functionis more useful while in other situations a frequency-domain approach based onspectrum is preferable.3 Nonparametric MethodsA common spectral estimator is based on a function called periodogram. Oneof the �rst uses of periodogram has been in determining possible hidden pe-riodicities in time series, which may be seen as a motivation for the name ofthis method (Schuster, 1898). The basic ideas underlying periodogram analysismay be explained heuristically as follows. For each positive integer n de�nehn(!) = 12�nE0@����� nXt=1Xt expf�it!g�����21A : (4)It can be shown that hn(!) ! 12� P1�=�1R(�) expf�i!�g = h(!) asn!1 (see Brockwell and Davis, 1991, p. 343). So In(!) = 1n ��Pnt=1Xte�it!��2,which is called periodogram, is asymptotically unbiased estimator of 2�h(!);a natural estimate.Let In(!) = 1n jPnt=1 Xt expf�it!gj2 be the periodogram of data set110 c
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A. R. Nematollahi 214fX1; X2; : : : ; Xng: Then for each !; we may write In(!) in the alternative formIn(!) = 1n ����� nXt=1Xt expf�it!g�����2= 1n  nXt=1Xt expf�it!g! nXr=1Xr expfir!g!= n�1X�=�n�1 bR(�) expf�i�!g; � = t� r= bR(0) + 2 n�1X�=1 bR(�) expf�i�!g; � = t� r (5)where bR(�) is the (biased) sample autocovariance function of R(�) at lag � , i.e.bR(�) = 1n n�j� jXt=1 XtXt+j� j: (6)From (5) we have that the periodogram is the discrete Fourier transform of thecomplete sample autocovariance function. The striking resemblance between(5) and the expression h(!) = 12� P1�=�1R(�) expf�i!�g for the spectral den-sity of a stationary time series withP1�=�1 jR(�)j <1 suggests the potentialvalue of the periodogram for spectral density estimation (indeed, if the sampleautocovariance function, bR(�); of the observations fX1; X2; : : : ; Xng can beregarded as a sample analogue of R(�), so can the periodogram, In(�); of theobservations be regarded as a sample analogue of 2�h(!).A critical disadvantage of the periodogram as an estimate of the powerspectrum h(!) is that its variance is approximately h2(!); under reasonableregularity conditions, even when based on a lengthy stretch of data (Brillinger,1981). In particular, for each ! 2 [0; �]; and " > 0;P (jIn(!)� 2�h(!)j > ")! p > 0;as n ! 1: This means In(!) is not a consistent estimator of 2�h(!): ThusIn(!) is an asymptotically unbiased estimator of 2�h(!); but of course, it is notconsistent. So no matter how large n is taken, the variance will tend to remainat the level h2(!), (the variance does not decrease as n increases), and if anestimate with a variance smaller than this is desired, it is not to be obtainedby simply increasing the sample length and continuing to use the periodogram.The lack of consistency is perhaps not too surprising, because the graph ofJ. Statist. Res. Iran 2 (2005): 107-127 111
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213 Spectral Estimation of Stationary Time Series . . .the periodogram usually 
uctuates wildly. So for a process with a continuousspectrum, the periodogram provides a poor estimate and needs to be modi�ed.One way of obtaining an expression with a reduced variance is simply toomit some of the terms in (5). If we do this, we will certainly reduce thevariance, but on the other hand the terms omitted will a�ect the expectedvalue of the new expression, and the general e�ect will be to increase the bias.However, we know that if the process has a purely continuous spectrum, thenR(�)! 0, as j� j ! 1, and hence if we omit only those terms which correspondto the tail of the sample autocovariance function, then hopefully the bias willnot be a�ected too seriously. These ideas suggest that we might consider as anestimate of h(!) an expression of the formbh0(!) = 12� MX�=�M bR(�) expf�i�!g; (7)where M(< n) is some integer whose precise value is as yet unspeci�ed, andis called the truncated point or bandwidth (Priestley, 1989). The precision ofthe bR(�) decreases as � increases, so that it would seem intuitively reasonableto give less weight to the values of bR(�) as � increases. An estimator with thisproperty is bh(!) = 12� MX�=�M �(�) bR(�) expf�i�!g; (8)where f�(�)g is a set of weights called the lag windows. The reason for thisrather unusual terminology stems from the fact that we often think �(�) asbeing e�ectively zero outside a small interval, say (�"; "); and hence the sum-mation (8) may be regarded as giving a view of bR(�) expf�i�!g through anarrow window. The term window was �rst introduced by Blackman andTukey (1959). The lag window is an even, piecewise continuous function of� satisfying the conditions �(0) = 1; j�(�)j 6 1 for all � , and �(�) = 0 forj� j > M: Also the bandwidth M satisfy M ! 1 and M=n ! 0 as n ! 1;which simply mean that the number of terms in the weighted series (8) goesto 1 as n ! 1; while at the same time the width of the frequency intervalover which the average is taken goes to zero. The estimator bh(!) given by (8)is called the lag window spectral density estimator.In order to use the above estimator, we must choose a suitable lag windowand a suitable truncation point. Some lag windows which are in common usetoday are:112 c
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A. R. Nematollahi 212i) The truncated or rectangular window:�(�) = (1; j� j 6M0; j� j > MHere, all the autocovariances up to lag M are given equal weight.Using this window, (8) reduces to (7).ii) The Bartlett or triangular window:�(�) = (1� j� jM ; j� j 6M0; j� j > MHere, we apply linearly decreasing weights to the autocovariances upto lag M and zero weights thereafter.iii) The Tukey-Hamming or Blackman-Tukey window:�(�) = (0:54 + 0:46 cos���M � ; j� j 6M0; j� j > Miv) The Parzen window:�(�) = 8>>><>>>:1� 6 � �M �2 + 6� j� jM �3 ; j� j 6 M22�1�j� jM �3 ; M2 6 j� j 6M0; j� j > Mv) The Bartlett-Priestly window:�(�) = 3M2(��)2  sin ���M ���M � cos���M �! :The Bartlett-Priestly window was derived by minimizing an approxi-mate expression for the relative mean square error of the estimatedspectral density function with respect to the functional form of thewindow (Priestley, 1962; Bartlett, 1963). Priestly showed that thiswindow is optimal within a somewhat restricted class of windows, butits optimality with respect to the relative mean square error was laterestablished more generally by Epanechnikov (1969).J. Statist. Res. Iran 2 (2005): 107-127 113
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211 Spectral Estimation of Stationary Time Series . . .The choice of the truncation point (bandwidth), M; is rather di�cult andlittle clear-cut advice is available in the literature. The smaller the value ofM; the smaller will be the variance of bh(!), but the larger will be the bias. IfM is too small, important features may be smoothed out, while if M is toolarge, the behaviour of bh(!) becomes more like that of periodogram with erraticvariation, i.e.as M"; variance "; bias #; as M#; variance #; bias "(see Priestley, 1989, p. 517). Thus a compromise value must be chosen. Auseful rough guide is to choose M to be about 2pn. This choice of M ensuresthe asymptotic situation that as n ! 1; so also does M ! 1 but in such away that M=n! 0. But, as Hannan (1970, p. 311) says, experience is the realteacher and that cannot be got from a book.The above methods are based on transforming the sample autocovariancefunction. An alternative approach is to smooth the periodogram by sim-ple grouping the periodogram ordinates in a set and �nding their averagevalue. This approach is based on a suggestion by Daniell in 1946. It can beshown that for large n the periodogram ordinates at �xed frequencies (In(!j);where !j = 2�j=n) are approximately independent with variances changingonly slightly over small frequency interval. So we might hope to construct aconsistent estimator of h(!) by averaging the periodogram estimates in a smallfrequency interval containing ! (just as we obtain a consistent estimator of apopulation mean by averaging the observed values in a random sample of sizen). For example, consider a simple moving average �lter by smoothing theseries fIn(!j)g; i.e., (1=2�)Pjkj6Mf1=(2M + 1)gIn(!j+k); or more generally,eh(!j) = 12� Xjkj6M Wn(k)In(!j+k); (9)where in order this estimate to be consistent, we must impose the followingconditions on fWn(�)g.i) Wn(k) =Wn(�k); Wn(k) > 0; 8k;ii) Pjkj6M Wn(k) = 1;iii) Pjkj6M W 2n(k)! 0; as n!1:The conditions on fWn(�)g ensure that the mean and variance of eh(!) convergeto h(!) and 0; respectively, as n!1: The estimator eh(!) given by (9) is calleda discrete spectral average estimator of h(!):114 c
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A. R. Nematollahi 210The above methods were proposed originally for estimating the spectraldensity function of a stationary process whose spectrum is absolutely contin-uous. However, in recent years spectral estimation has been used with theobjective of estimating the line spectrum of a signal observed in the presenceof white noise. These considerations have led engineers to look for spectral es-timates with high resolution, since spectral peaks with narrow bandwidths maycorrespond to the presence of periodicities in the signal. Mewes and Derm�uhl(2001) consider the time seriesXt = 0:1� sin(2� � 100t) + sin(2� � 200t) + sin(2� � 210t) + "t;where f"tg is a sequence of uncorrelated random variables, each with zeromean and variance 1. Such a sequence is referred to as white noise and isdenoted by "t s WN(0; 1): They compared the true spectral density functionof Xt with four estimates: periodogram with a sample size n = 64; n = 2048;and a discrete spectral average estimator using Hamming and rectangular lagwindows with a sample size n = 1000: They observed that the classical methods(using periodogram) for estimating the spectrum (specially when the samplesize is small) have not enough precision and they are not able to distinguishtwo strong peaks from each other. Larson et al. (2003) have also presentednumerical examples showing these di�culties.Two particular estimates for solving this problem are given by Capon (1969)and Pisarenko (1972), and these are widely used in signal processing problems.The Capon method is a classical spectral analysis method that has also, some-what incorrectly, been referred to as a maximum likelihood spectral estimator,for more details, see Capon (1983), Stoica and Moses (2005), Marple (1987)and Kay (1988). These estimates, though frequently cited in the engineeringliterature, are less familiar to time series analysts. The fastest available tech-nique for the computation of the Capon spectra is that of Larson and Stoica(2002). In Li et al. (1998) the bias and variance of Capon and several esti-mators have been compared. For more information refer to Jakobsson (2000),Jakobsson et al. (2000) and Ekman et al. (2000). Subba Rao and Gabr (1989)discussed the motivation for the Pisarenko estimator, using the properties ofcircular symmetric matrices, and considered its relationship with Capon's highresolution estimator. They considered the estimator,hn(!) = 12�n nXt=1 nXs=1R(t� s) expf�i(t� s)!g; (10)which is asymptotically equivalent to estimating h(!), (and called hn(!) the\truncated spectral density function"): They showed that hn(!) can be writtenJ. Statist. Res. Iran 2 (2005): 107-127 115

 [
 D

ow
nl

oa
de

d 
fr

om
 js

ri
.s

rt
c.

ac
.ir

 o
n 

20
25

-1
1-

29
 ]

 

                             9 / 22

https://jsri.srtc.ac.ir/article-1-155-en.html


209 Spectral Estimation of Stationary Time Series . . .as hn(!l) = 14� 0@�n;0An;0(!l) + (n�1)=2Xj=1 (�n;2j + �n;2j�1)An;2j(!l)1A ; (11)whereAn;0(!l) = (2=n)2�Fn�1(!l); An;2j(!l) = An;2j�1(!l) = (1=n)f2�Fn�1(!j+!l) + 2�Fn�1(!j � !l)g, and �n;0; �n;1; : : : ; �n;n are the eigenvalues of theToeplitz matrix Rn given byRn = 0BBB@ R(0) R(1) � � � R(n� 1)R(�1) R(0) � � � R(n� 2)... ... ...R(�(n� 1)) R(�(n� 2)) � � � R(0) 1CCCA :Note that Fn(�) is the Fej�er kernel (e.g. Priestley, 1989) and is given byFn(�) = 12�n � sin2 �n�2 �sin2 � �2� :In �nding the estimator (11), they used the asymptotic equivalence of Rnwith a related circular symmetric matrix which is well-known (e.g. Gray, 1972).Note that hn(!l) is a smoothed version of the eigenvalues of Rn, and thesmoothing function (lag window) is the Fej�er kernel, it is linear in the eigenval-ues �n;j and that An;j(!l) does not depend on the process. This suggests thatthese eigenvalues can be replaced by any non-linear function of �n;j and bysuitably de�ning an inverse function we can, in the limiting form, recover theoriginal spectrum. To be more precise, consider a strictly monotone continuousfunction G(�) over the interval (0;1) and let g(�) be an inverse function, i.e.g(G(x)) = x: Then we can consider the functionhn;P(!l) = g0@n�1Xj=0 G(�n;j)An;j(!l)1A ; (12)as an approximation to hn(!): In fact, this is the way that Pisarenko (1972)derived his estimate, and (12) is the theoretical form of the general Pisarenkoestimate. Note that (12) must be multiplied by an appropriate scale factorto recover hn(!); and that this factor is dependent to the form of G(�): Inits general form (12) also includes the theoretical form of the high resolutionestimator of Capon (1969). To obtain this, substitute G(x) = x�1 in (12).Then we obtain116 c
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A. R. Nematollahi 208
hn;P(!l) = 1� 0@n�1Xj=0 ��1n;jAn;j(!l)1A�1 : (13)The theoretical form of Capon's estimator is given byhn;Cap(!l) = 1�hn;P(!l)= 1� 0@n�1Xj=0 ��1n;jAn;j(!l)1A�1 : (14)Note that Capon (1969) de�ned the theoretical form of his minimum vari-ance spectral estimator as (2�=n)hn;Cap(!l): So, it is clear that the estimatorde�ned by Capon (1969) does not strictly qualify as a power spectral density.Further remarks and details are given in Larson et al. (2003).4 Parametric MethodsThe principal di�erence between the spectral estimation methods of Section 3and those in this section, is that in Section 3 we made no assumption on thestudied time series (except for its stationarity). The parametric or model-basedmethods of spectral estimation assume that the time series satis�es a gener-ating model with known functional form, and then proceed by estimation theparameters in the assumed model. The spectral density are then derived fromthe estimated model. In those cases where the assumed model is near to thereality, the parametric methods provide more accurate spectral estimates thanthe nonparametric techniques. The nonparametric approach remains useful,where there is little or no information about the time series model in question.In parametric methods, the spectral density estimator is usually obtainedby �tting an ARMA model to the data and then the spectral density of the�tted model is computed. Provided there is an ARMA model that �ts the datasatisfactorily, this procedure has the advantage that it can be made systematicby selecting the model according, for example, to a bias-corrected version of theAIC (the information criterion of Akaike) known as the AICC (Akaike, 1973a).In this way, the pth order autoregressive estimator bhp(!) of the spectraldensity of a stationary time series fXtg is the spectral density of the autore-gressive process fYtg de�ned byYt � b�p1Yt�1 � � � � � b�ppYt�p = Zt; fZtg �WN(0; bvp) (15)J. Statist. Res. Iran 2 (2005): 107-127 117
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207 Spectral Estimation of Stationary Time Series . . .where b�p = (b�p1; : : : ; b�pp)0 and bvp are the well-known Yule-Walker estimatorsof the coe�cient vector �p = (�p1; : : : ; �pp)0 and white noise variance �2 fromAR(p) model: Yt � �p1Yt�1 � � � � � �ppYt�p = Zt; respectively: Thenbhp(!) = bvp2� � ���1� b�p1 expf�i!g� � � � � b�pp expf�ip!g����2 : (16)The choice of p for which the approximating AR(p) process \best" representsthe data can be made by minimizing AICC. The pth order autoregressive es-timator bhp(!) de�ned by (16) is the same as the maximum entropy estimator,i.e. the spectral density bh which maximizes the entropy,E = Z ��� ln g(!)d!;over the class of all densities g which satisfy the constraints,Z ��� expf�i!�gg(!)d! = bR(�); � = 0;�1; : : : ;�p(see Brockwell and Davis, 1991).In the de�nition (16) it is natural to consider replacing the Yule-Walkerestimates b�p and bvp by the corresponding maximum likelihood estimates. Also,there is no need to restrict attention to autoregressive models, and there areprocesses for which autoregressive spectral estimation performs poorly. Spectrawith both sharp peaks and deep nulls cannot be modeled by either AR or MAequations of reasonably small orders. It is in these cases that the more generalARMAmodel is valuable. The practical ARMA estimators are computationallysimple and often quite reliable, but their statistical accuracy is in some casespoor. See Byrnes et al. (2000, 2001) for some results on ARMA parameterestimation. To deal with cases of this kind we can use the estimate suggestedby Akaike (1973b), i.e.bh(!) = b�22� � ���1 + b�1 expf�i!g+ � � �+ b�q expf�iq!g���2���1� b�1 expf�i!g� � � � � b�p expf�ip!g���2 ; (17)where b� = (b�1; : : : ; b�p)0 and b� = (b�1; : : : ; b�q)0 and b�2 are maximum likelihoodestimates of an ARMA(p; q) process �tted to the data, with p and q chosenby AICC. The estimate bh(!) is called the maximum likelihood ARMA (orMLARMA) spectral density estimate. A simple but less e�cient estimator than(17) which is particularly useful for processes whose MA(1) representation has118 c
 2005, SRTC Iran
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A. R. Nematollahi 206rapidly decaying coe�cients is the moving average estimator (Brockwell andDavis, 1991) given bybhq(!) = bv2q2� � ���1 + b�q1 expf�i!g+ � � �+ b�qq expf�iq!g���2 ; (18)where b�q = (b�q1; : : : ; b�qq)0, and bv2q are the innovation estimates. The advantageof both estimators (16) and (18) over the MLARMA estimator is the sub-stantial reduction in computation time. Moreover, under speci�ed conditions,the asymptotic distributions of the autoregressive and moving average spec-tral density estimators can be determined for a large class of linear processes(Brockwell and Davis, 1991).An indirect but computationally e�cient method with numerical results isgiven by Stoica et al. (2000) and Dumitrescu et al. (2001).5 Multivariate CaseIn this section we consider the estimation of the spectral density functionof a vector-valued series: The approach in multivariate case is based on theproperties of the eigenvalues of block-Toeplitz matrices, and is similar to theapproach given by Subba Rao and Gabr (1989) and heavily based on the re-sults of Hannan and Wahlberg (1989). Let fXt; t 2 Zg be zero mean vec-tor, discrete-parameter, and second order T -dimensional stationary series withXt(j); j = 0; : : : ; T � 1, as its jth element, and R(�) = E(Xt+�X0t) ; � 2 Z; bethe autocovariance matrix of Xt : We assume that the series has an absolutelycontinuous spectrum and let h(!) = [hjk(!)]j;k=0;1;:::;T�1; denote its spectraldensity matrix, i.e., lethjk(!) = 12� 1X�=�1Rjk(�) expf�i!�gwhere Rjk(�) = EXt+� (j)Xt(k); (j; k = 0; 1; : : : ; T �1) is the (j; k)-th elementof R(�): Equivalently, we may writeh(!) = 12� 1X�=�1R(�) expf�i!�g; 0 6 ! 6 2�Let fX1;X2; : : : ;Xng be a sample of size n from fXtg. A natural estimatorof the cross-covariance Rjk(�) isbRjk(�) = 1nXt Xt+� (j)Xt(k); � = 0;�1; : : : ;�(n� 1)J. Statist. Res. Iran 2 (2005): 107-127 119
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205 Spectral Estimation of Stationary Time Series . . .where the summation is from t = 1 to (n � �); � > 0; and from t = (1 � �)to n; � < 0. It can be shown that (Priestley, 1989)Ef bRjk(�)g = Rjk(�) +O� 1n� ;where \f(x) = O(g(x))" denote the existence of a constant C; such thatjf(x)j 6 Cg(x) for all x.Let In(!) = [In;jk(!)]j;k=0;:::;T�1 be the periodogram matrix with (j; k)-thelement In;jk(!) = �Xj (!)��Xk (!);where �Xj (!) = 1p2�n nXt=1Xt(j) expf�i!tg; j = 0; : : : ; T � 1denotes the �nite Fourier transform of Xt(j), (for j = k; In;jj is simply theperiodogram of Xt(j); and for j 6= k; In;jk is the cross-periodogram betweenXt(j) and Xt(k)): ThenE fIn;jk(!)g = 12�n nXt=1 nXs=1Rjk(t� s) expf�i(t� s)!g= hn;jk(!); say: (19)In matrix form, under some regularity conditions on h(!), (Priestley, 1989),we can write E fIn(!)g = 12�n nXt=1 nXs=1R(t� s) expf�i(t� s)!g (20)= hn(!); say; (21)= h(!) +O� lognn � ; (22)where O(�) = O(�)1n10n; with 1n= (1; 1; : : : ; 1)0. We shall call hn(!) the trun-cated spectral density matrix.Thus In(!) is an asymptotically unbiased estimator of h(!); but of courseit is not consistent (Brillinger, 1981). In order to �nd a consistent estimator ofh(!); the usual procedure is to smooth the periodogram by a suitable kernel120 c
 2005, SRTC Iran
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A. R. Nematollahi 204(Brillinger, 1981). Nematollahi and Subba Rao (2005) showed that the theo-retical spectral density matrix h(!) can be written in terms of the eigenvaluesof the variance-covariance matrix, then one can estimate h(!) using the eigen-value decomposition of the sample variance-covariance matrix and show thatit intrinsically makes use of Fej�er kernel type of weight functions.More precisely, de�ne a nT � 1 vector Xn = (X0n;X0n�1; : : : ;X01)0 and let�n = EXnX0n be its variance-covariance matrix. We have�n = 0BBB@ R(0) R(1) � � � R(n� 1)R(�1) R(0) � � � R(n� 2)... ... ...R(�(n� 1)) R(�(n� 2)) � � � R(0) 1CCCA :We note that �n is a block-Toeplitz matrix. Individual matrix elements arenot, in general, symmetric (R(�) 6= R0(�)), although R(��) = R0(�):Nematollahi and Subba Rao (2005) derived the following expression forestimation of spectral density matrix h(!).hn(!l) = 14� n�1Xj=0An(!j ; !l); (23)withAn(!j ; !l) = 2n nXt=1 nXs=1Wt�n (!j)�n(!j)Wsn(!j) expf�i(t� s)!lg; (24)where�n(!j) is an \eigenvalue-matrix" of �n, andWn(!j) is an \eigenvector-matrix" associated with �n(!j), (clearly, they are not the eigenvalue and theeigenvector in the usual sense). In �nding the estimator (23), they used theasymptotic equivalence of Rn with a related circular symmetric matrix whichhave been proved in the multivariate case by Nematollahi and Shishebor (2005)and is a multivariate generalization of the well-known result of Gray (1972).Nematollahi and Subba Rao (2005) showed that an equivalence form forhn(!l) given by (23) ishn(!l) = 14�� 2n � 2�Fn�1(!l)�n(!0)+ 2 (n�1)=2Xj=1 1n�n(!2j)f2�Fn�1(!j + !l) + 2�Fn�1(!j � !l)g�; (25)J. Statist. Res. Iran 2 (2005): 107-127 121
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203 Spectral Estimation of Stationary Time Series . . .where Fn(�) = 12�n � sin2 �n�2 �sin2 � �2� ;which is the Fej�er kernel. The approximate relation (25) tells us that thespectral density function hn(!l) is in fact a smooth function of �n(!j) and thesmoothing function is the well-known Fej�er kernel. We observe that hn(!l) islinear in �n(!j) and that An(!j ; !l) does not depend on the time series fXtg.Similar to the univariate case, this suggests that these eigenvalue-matrices canbe replaced by any nonlinear function of �n(!j) and by suitably de�ning aninverse function, we can, in the limiting form, recover the original spectrum.Consider a strictly monotonic continuous function G(�) and g(�) be an inversefunction, i.e. g(G(x)) = x: Then we can introduce the functionhn;P(!l) = g0@n�1Xj=0 2nB�n(!j ; !l)G(�n(!j))Bn(!j ; !l)1A ; (26)as an approximation to hn(!l); where Bn(!j ; !l) = Pns=1Wsn(!j) expfis!lg,andWsn(!j) is the sth block ofWn(!j). In fact, this is a generalization of theway that Pisarenko (1972) derived his estimate in the univariate case, and (26)is the generalization of the theoretical form of the Pisarenko's estimator givenby (12), to the multivariate case. Also, note that (26) must be multiplied byan appropriate scale factor to recover hn(!l); and this factor is independent ofthe form of G(�).As we mentioned in Section 3, the high resolution estimation of the spectraldensity function given by (14) was introduced by Capon (1969) in the univariatecase. A multivariate generalization and also an explicit expression for the highresolution spectral density matrix (a generalization of Capon's estimator) of thevector series Xt are also given by Nematollahi and Subba Rao (2005): Theyderived an appropriate minimum variance (MV) spectral estimator with formhn;Cap(!) = 1� � 2nL�n(!)��1n Ln(!)��1 ; (27)where Ln(!l) = (I; expfi!lgI; : : : ; expfni!lgI)0 : It can be shown that anothertheoretical form of generalized Capon's estimator is given byhn;Cap(!l) = 1� 0@n�1Xj=0 eAn(!j ; !l)1A�1 ; (28)122 c
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A. R. Nematollahi 202whereeAn(!j ; !l) = 2n nXt=1 nXs=1Wt�n (!j)��1n (!j)Wsn(!j) expf�i(t� s)!lg: (29)This is a multivariate generalization of the minimum variance spectral (MVS)estimator due to Capon (1969) or relation (14).The relationship between the AR and Capon spectra and the extensionof the result to two-dimensional time series can be found in Jakobsson et al.(2000). The extension of the nonparametric spectral analysis methods to two-dimensional (2D) time series can be found in Stoica and Moses (2005). Theyalso provide new interpretations for some of these methods, which are partic-ularly useful when we want very simple (although somewhat heuristic) deriva-tions of the methods in question. The 2D spectral analysis �nds applicationsin image processing, synthetic aperture radar imagery, etc. See Larson et al.(2003) and the references therein for a review that covers the well-known 2Dmethods and their application to synthetic aperture radar. The 2D extensionsof some parametric methods are also discussed in Stoica and Moses (2005).6 ConclusionsThis paper has summarized some main results in the area of parametric andnonparametric analysis of the spectral estimation problem. We have also dis-cussed various extensions of the methods, with the extension to the multivariatetime series. Spectral estimation via methods mentioned above is a theme thatcan be extended and developed in many ways. The intention is to summarizesome extension and variations of the mentioned methods that have appeared inthe literature. Instead of providing a full treatment of all techniques, we havereferred the reader to the original articles for more details. Although there existan abundance of research papers in this area, there are still topics that shouldform the subject of future investigations. We have not given an exhaustive listof open problem, but it seems the most interesting and relevant ones to solveinclude �nding a fast time-recursive implementation of Capon estimator andderiving an optimal choice of the truncation point (bandwidth) and windows.AcknowledgementI wish to thank the referees and editor for many useful suggestions.
J. Statist. Res. Iran 2 (2005): 107-127 123
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