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1 Introduction

Construction of bivariate distributions with given margins has been main
interest of many researchers for many years. A popular approach is to use
copula and the Sklar’s theorem (Nelson, 2006). Copulas are very power-
ful tools to model multivariate distributions and to take into account the
dependence structure among random variables, independent of the type of
marginal distributions. Recently, various authors have introduced different
classes of copulas to improve the performance of associated bivariate distri-
butions, such as Amblard and Girard (2009), Amini et al. (2011), Fischer
and Klein (2007), Klein and Christa (2011), Lallena and Údeda-Flores
(2010), Morillas (2005) and Sharifonnasabi et al. (2018). On the other
hand, several authors such as Mirhosseini et al. (2014) and Shiau (2006)
have used copula methods to construct bivariate distributions.
The univariate exponential distribution is useful to describe the lifetime of
a single component. It is perhaps the most widely applied statistical distri-
butions in reliability. Bivariate distributions with exponential marginals are
similarly useful and highly helpful to describe the joint lifetime of systems
with two components. In many reliability cases, bivariate lifetime data play
an important role in the data analysis process.
One of the most popular bivariate exponential distributions is Marshal-Olkin
distribution which contains a singular part, that is, P (X = Y ) > 0 when the
random vector (X,Y ) is distributed according to the Marshal-Olkin model.
Some properties of the bivariate exponential distribution and their applica-
tions to reliability are given by Basu (1988), Balakrishnan and Basu (1995),
and Balakrishnan and Lai (2009).
Kamps (1995) introduced a class of generalized order statistics as a unified
approach to a variety of models for ordered random variables. The class
includes several subjects, such as order statistics, record values, k-record val-
ues and progressively Type-II censored order statistics, as special cases. If
the pairs of random variables (Xi, Yi), i = 1, 2, ..., n, have been ordered by
the Xi values, then the Y variate associated with the r-th order statistics,
X(r) of X, denoted by Y[r], 1 ⩽ r ⩽ n, is so-called concomitants of the rth
ordered statistic. Concomitants are of interest in selection and prediction
problems. David and Nagaraja (1998) presented an excellent review on the
concomitants of order statistics. Beg and Ahsanullah (2008) considered
concomitants of generalized order statistics for Farlie-Gumbel-Morgenstern
(FGM) bivariate distribution and studied relations between their moments.

© 2018, SRTC Iran



Z. Sharifonnasabi, M. H. Alamatsaz and I. Kazemi 277

Tahmasebi and Behboodian (2010) obtained Shannon entropy for the con-
comitants of ordinary order statistics for Generalized Morgenstern (GM)
bivariate distribution. Mohie et al. (2015) provided the minimum vari-
ance linear unbiased estimator for the location and scale parameters of the
concomitants of ordinary order statistics from certain distributions. In this
paper, we shall introduce a new bivariate distribution using copula methods
and explore its main properties. Then, we present another interesting bivari-
ate exponential distribution, as its especial case, and provide the parameters
estimate in practical applications.
The rest of the paper is organized as follows. In Section 2, we consider a
special case of the bivariate copula class introduced by Sharifonnasabi et al.
(2018) and explore its additional properties. In Section 3, we generate a
bivariate distribution in a general form by applying our proposed copula and
study their marginal and joint distributions of concomitants of generalized
order statistics. Then we derive several explicit expressions and recurrence
relations for the moments of concomitants. Further, we provide the minimum
variance linear unbiased estimator for the location and scale parameters of
the concomitants of ordinary order statistics from Burr and logistic distri-
butions. In Section 4, we propose a bivariate distribution whose univariate
margins are exponential and derive the moment generating function, condi-
tional moment, stress-strength value, mean time of failure and reliability of
parallel and series systems. Moreover, we provide some simulation results
and analyze two real-life data sets to highlight the usefulness of our proposed
distributions.

2 Copulas

Copula is a multivariate function that links univariate marginal distribution
functions (df) to construct a multivariate df. The theoretical basis of copulas
was first given by Sklar (1959). For a bivariate case, according to Sklar’s
Theorem, if two random variables X and Y follow arbitrary marginal dfs
FX(x) and GY (y), respectively, then there exists a copula, C, that combines
these two marginals to give their joint df, HX,Y (x, y), as follows

HX,Y (x, y) = C(FX(x), GY (y)). (1)

Conversely, if C is a copula and FX(x) and GY (y) are dfs, then the function
H defined by (1) is a joint df with margins FX(x) and GY (y). Furthermore,
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if FX(x) and GY (y) are absolutely continuous, then C is unique. Under the
assumption that the marginal distributions are continuous with probability
density functions fX(x) and gY (y), the joint probability density function
(pdf) then becomes

hX,Y (x, y) = fX(x)gY (y)c(FX(x), GY (y)), (2)

where c is the density function of C, defined by

c(u, v) =
∂2

∂v∂u
C(u, v). (3)

Recently, Sharifonnasabi et al. (2018) show that the following bivariate
function

C(u, v) = K(u, v)[1 + θϕ(u)ϕ(v)]
1
γ , ∀u, v ∈ I, (4)

is a copula under certain conditions.
As a special case of (4), we can see that the bivariate function

C(u, v; θ, δ) = uv[1 + δ(1− u)2(1− v)2][1 + θ(1− u)(1− v)], (5)

is a copula for θ ∈ (−1, 1), δ ∈ [0, 1]. The density copula of (5) is given by

c(u, v; θ, δ) = 1 + θ + δ + δθ − (4δ + 2θ + 6θδ)(u+ v)− 4θδ(u3 + v3)

+(3δ + 9θδ)(u2 + v2)− (12δ + 54θδ)(uv2 + u2v)

+24θδ(uv3 + u3v)− 36θδ(u2v3 + u3v2)

+(16δ + 4θ + 36θδ)uv + (9δ + 81θδ)u2v2 + 16θδu3v3

=

3∑
i=0

3∑
j=0

ai,j(θ, δ)u
ivj , (6)

where ai,j(θ, δ)’s are constant w.r.t. u and v. As it can be seen below, copula
(5) contains certain appealing characteristics. First, we give some features of
the new copula (cf. Shrifonnasabi et al., 2018). For the dependence measures
used below, we refer to Nelsen (2006).
Remark 1. If r.v.’s X and Y are related by the new copula defined in (5)
and θ ∈ [0, 1], then we can show that
i. X and Y are PQD and LCSD and Y is LTD in X.
ii. X and Y have zero tail dependence.
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Table 1. τ and ρs values of copula (5) for different parameters setting.
δ θ τ ρs

ρs
τ

δ θ τ ρs
ρs
τ

0.0001 0.0001 28e-6 42e-6 1.4999 0.0001 -0.0001 -0.17e-6 -0.25e-6 1.4999
0.0001 0.4001 0.0889 0.1334 1.4999 0.0001 -0.4001 -0.0889 -0.1334 1.4999
0.5001 0.1001 0.0512 0.0765 1.4963 0.5001 -0.1001 0.0044 0.0068 1.5354
0.2001 0.1001 0.0338 0.0506 1.4978 0.2001 -0.1001 -0.0116 -0.0173 1.4947
0.4001 0.3001 0.0917 0.137 1.4942 0.4001 -0.3001 -0.0471 -0.0703 1.4938
0.3001 0.4001 0.1084 0.162 1.4947 0.3001 -0.4001 -0.0748 -0.1120 1.4967
0.7001 0.2001 0.0866 0.1292 1.4932 0.7001 -0.2001 -0.0086 -0.0126 1.4537
0.6001 0.9001 0.2465 0.3662 1.4858 0.6001 -0.9001 -0.1777 -0.2662 1.4985
0.9001 0.5001 0.1717 0.2552 1.4862 0.9001 -0.5001 -0.0707 -0.1052 1.4878
0.5001 0.6001 0.1682 0.2507 1.4902 0.5001 -0.6001 -0.1119 -0.1674 1.4961
0.8001 0.8001 0.2377 0.3526 1.4832 0.8001 -0.8001 -0.1465 -0.2192 1.4961
0.9001 0.9001 0.2698 0.3993 1.4802 0.9001 -0.9001 -0.1665 -0.2493 1.4972
1 0.99 0.2999 0.4430 1.4771 1 -0.99 -0.1844 -0.2764 1.4989

iii. C is positively ordered with respect to θ and δ and C is Schur-concave.
iv. C is not concave in u and thus Y is not stochastically increasing in X.
v. Kendall’s τ and Spearman’s ρ for copula in (5) are given by

τ =
2θ

9
+

δ

18
+

δθ

45
+

δθ2

450
+

2δ2θ

11025
, ρs =

3δθ

100
+

δ

12
+

θ

3
,

where PQD, LCSD and LTD denote positively quadrant dependent, left cor-
ner set decreasing, and left tail decreasing, respectively.

Values of τ and ρs for copula (5) are given in Table 1. It follows that
ρs
τ → 3

2 as θ → 0 and δ → 0. Since τ and ρs are increasing functions of θ
and δ, the range of values of τ and ρs for copula (5) are

−0.2222 ⩽ τ ⩽ 0.3024, −0.3333 ⩽ ρs ⩽ 0.4467.

3 Concomitants of Generalized Order Statistics
In this section, we investigate concomitants of generalized order statistics for
the related bivariate random variable (X,Y ) according to the copula C in
(5). Generalized order statistics provide a unified approach to a variety of
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models of ordered random variables such as order statistics, record values, k-
record values and progressively Type-II censored order statistics, as special
cases. The most important applications of concomitants arise in selection
procedures and prediction problems. For more details we refer to Kamps
(1995), David and Nagaraja (1998) and Beg and Ahsanullah (2008).
Let (Xi, Yi), i = 1, 2, ... be a sequence of independent bivariate random vari-
ables identical to (X,Y ) with an absolutely continuous joint df HX,Y and
joint pdf hX,Y . Let Y[r,n,m,k] denote the concomitant of the rth generalized
order statistics associated with X(r,n,m,k). That is, Y[r,n,m,k] = Yi if, and only
if, X(r,n,m,k) = Xi. The pdf and df of Y[r,n,m,k], 1 ⩽ r ⩽ n are respectively
given by

g[r,n,m,k](y) =

∫ ∞

−∞
hY |X(y|x)fr,n,m,k(x)dx (7)

and
G[r,n,m,k](y) =

∫ ∞

−∞
HY |X(y|x)fr,n,m,k(x)dx, (8)

where fr,n,m,k(x) is th pdf of the r-th generalized order statistics.
Let Y[r,n,m,k] and Y[s,n,m,k] be concomitants of the rth and sth generalized
order statistics (1 ⩽ r < s ⩽ n), respectively. Then the joint df and pdf of
Y[r,n,m,k] and Y[s,n,m,k] are, respectively, given by

g[r,s,n,m,k](y1, y2) =

∫ ∞

−∞

∫ x2

−∞
p(r,s,n,m,k)(x1, x2, y1, y2)dx1dx2, (9)

G[r,s,n,m,k](y1, y2) =

∫ ∞

−∞

∫ x2

−∞
P(r,s,n,m,k)(x1, x2, y1, y2)dx1dx2, (10)

where

p(r,s,n,m,k)(x1, x2, y1, y2) = hY |X(y1|x1)hY |X(y2|x2)f(r,s,n,m,k)(x1, x2),

P(r,s,n,m,k)(x1, x2, y1, y2) = HY |X(y1|x1)HY |X(y2|x2)f(r,s,n,m,k)(x1, x2),

and f(r,s,n,m,k)(x1, x2) is the joint pdf of the rth and sth; 1 ⩽ r < s ⩽ n;
generalized order statistics.
Now, let the bivariate random variable (X,Y ) be related to the copula (5)
with bivariate df HX,Y (x, y) and bivariate pdf hX,Y (x, y), as follows

HX,Y (x, y) = FX(x)GY (y)[1 + δF
2
X(x)G

2
Y (y)][1 + θFX(x)GY (y)], (11)
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and

hX,Y (x, y) = fX(x)gY (y)

3∑
i=0

3∑
j=0

ai,j(θ, δ)FX(x)iGY (y)
j , (12)

where FX(x) and GY (y) are dfs of X and Y , FX(x) and GY (y) are survival
functions of X and Y , respectively, and ai,j(θ, δ) is a bivariate function de-
pending on δ and θ. Then, their corresponding conditional df and conditional
pdf are given by

HY |X(y|x) = P (Y ⩽ y|X = x) =

∫ y
−∞ hX,Y (x, t)dt

fX(x)
,

=

3∑
i=0

3∑
j=0

ai,j(θ, δ)

j + 1
FX(x)iGY (y)

j+1, (13)

and

hY |X(y|x) =
hX,Y (x, y)

fX(x)
= gY (y)

3∑
i=0

3∑
j=0

ai,j(θ, δ)FX(x)iGY (y)
j .

We can rewrite hY |X(y|x) as follows

hY |X(y|x) = gY (y)

3∑
i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)

(
i

l

)
(−1)lFX(x)lGY (y)

j . (14)

Theorem 1. For the bivariate distribution (11), the pdf and cdf of Y[r,n,m,k]

are given by

g[r,n,m,k](y) =

3∑
i=0

3∑
j=0

i∑
l=0

ai,,j(θ, δ)g(y)G(y)jK[r,n,m,k,i,l], (15)

G[r,n,m,k](y) =
3∑

i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)

j + 1
G(y)j+1K[r,n,m,k,i,l], (16)

where

K[r,n,m,k,i,l] =
cr−1,n,γr+1,n

(r − 1)!(m+ 1)r
(−1)l

(
i

l

)
B(

γr+1,n + l

m+ 1
+ 1, r)
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and

B(α, β) =

∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)

Γ(α+ β)
.

Proof. Utilizing Equation (14), from (7) one obtains

g[r,n,m,k](y) =
cr−1,n,γr+1,n

(r − 1)!(m+ 1)r−1

3∑
i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)

(
i

l

)
(−1)lg(y)G(y)j

×
∫ ∞

−∞
FX(x)l(1− (F (x))m+1)r−1(F (x))γr,n−1f(x)dx.

Thus, making transformation u = F (x)m+1, we have

g[r,n,m,k](y) =
cr−1,n,γr+1,n

(r − 1)!(m+ 1)r

3∑
i=0

3∑
j=0

i∑
l=0

(
i

l

)
(−1)lai,j(θ, δ)g(y)G(y)j

×
∫ ∞

−∞
u

γr+1,n+l

m+1 (1− u)r−1du,

=
cr−1,n,γr+1,n

(r − 1)!(m+ 1)r

3∑
i=0

3∑
j=0

i∑
l=0

(
i

l

)
(−1)lai,j(θ, δ)g(y)G(y)j

×B(
γr+1,n + l

m+ 1
+ 1, r) =

3∑
i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)g(y)G(y)jK[r,n,m,k,i,l].

We can similarly obtain cdf of Y[r,n,m,k].

Theorem 2. The pth moment of Y[r,n,m,k] is given by

µp
[r,n,m,k] =

3∑
i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)

j + 1
K[r,n,m,k,i,l]µ

p
(j+1,j+1) (17)

and its moment generating function (mgf) is

M[r,n,m,k](t) =

3∑
i=0

3∑
j=0

i∑
l=0

ai,j(θ, δ)

j + 1
K[r,n,m,k,i,l]M(j+1,j+1)(t), (18)

where µp
(j+1,j+1) and M(j+1,j+1)(t) are the pth moment and mgf of Y(j+1,j+1),
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the (j + 1)-th order statistics of Y1, Y2, ..., Yj+1, j = 0, 1, 2, 3, respectively.
Proof. The proof is obvious, thus omitted.

To continue, we present the following Lemma.
Lemma 1. Let p and q be real numbers, then

cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∫ ∞

−∞

∫ x2

−∞
(F (x1))

p(F (x2))
m

× [1− (F (x1))
m+1]r−1[(F (x1))

m+1 − (F (x2))
m+1]s−r−1

× (F (x2))
γs−1(F (x2))

qf(x1)f(x2)dx1dx2,

=
γ1γ2...γs

(γ1 + p+ q)(γ2 + p+ q)...(γr + p+ q)(γr+1 + q)...(γs + q)
= Ip,q.

Proof. See Beg and Ahsanullah (2008).

Now utilizing (9), (10), and Lemma 1, we obtain

g[r,s,n,m,k](y1, y2) = g(y1)g(y2)

3∑
i1=0

3∑
j1=0

3∑
i2=0

3∑
j2=0

i1∑
l1=0

i2∑
l2=0

(−1)l1+l2

(
i1
l1

)(
i2
l2

)
× ai1,j1(θ, δ)ai2,j2(θ, δ)G(y1)

j1G(y2)
j2Il1,l2 ,

and

G[r,s,n,m,k](y1, y2) =

3∑
i1=0

3∑
j1=0

3∑
i2=0

3∑
j2=0

i1∑
l1=0

i2∑
l2=0

(−1)l1+l2

(
i1
l1

)(
i2
l2

)
× ai1,j1(θ, δ)ai2,j2(θ, δ)

(j1 + 1)(j2 + 1)
G(y1)

j1+1G(y2)
j2+1Il1,l2 ,

where Il1,l2 is defined in Lemma 1.

Theorem 3. The (p, q)th product moments and the joint moment generating
function of Y[r,n,m,k] and Y[s,n,m,k] are, respectively, given by

µp,q
[r,s,n,m,k] =

3∑
i1=0

3∑
j1=0

3∑
i2=0

3∑
j2=0

i1∑
l1=0

i2∑
l2=0

(
i1
l1

)(
i2
l2

)
(−1)l1+l2

ai1,j1(θ, δ)

(j1 + 1)

×ai2,j2(θ, δ)

(j2 + 2)
µp
(j1+1,j1+1)µ

q
(j2+1,j2+1)Il1,l2
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and

M[r,s,n,m,k](t1, t2) =

3∑
i1=0

3∑
j1=0

3∑
i2=0

3∑
j2=0

i1∑
l1=0

i2∑
l2=0

(
i1
l1

)(
i2
l2

)
(−1)l1+l2Il1,l2

×ai1,j1(θ, δ)ai2,j2(θ, δ)

(j1 + 1)(j2 + 2)
M(j1+1,j1+1)(t1)M(j2+1,j2+1)(t2),

where µp
(ji+1,ji+1) and M(ji+1,ji+1)(t) are pth moment and mgf of Y(ji+1,ji+1),

the (ji + 1)th order statistics of Y1, Y2, ..., Yji+1, j = 0, 1, 2, 3 and i = 1, 2.

Proof. The proof is obvious and thus omitted.

Example 1. Consider a random sample (Xi, Yi), i = 1, 2, ..., n, from the bi-
variate distribution HX,Y in (11). Let concomitant of the rth order statistics
Xr,n be denoted by Y[r,n], 1 ⩽ r ⩽ n. The pdf of Y[r,n], denoted by g[r,n], is
given by

g[r,n](y) =

3∑
i=0

3∑
j=0

ai,j(θ, δ)g(y)G(y)jS[r,n,i],

where

S[r,n,i] = K[r,n,0,1,i,l] =
n!

(r − 1)!(n− r)!
B(n− r + 1, r + i).

The pth moment and mgf of Y[r,n] can be deduced, respectively, as

µp
[r,n] =

3∑
i=0

3∑
j=0

ai,j(θ, δ)

j + 1
S[r,n,i]µ

p
(j+1,j+1),

M[r,n](t) =

3∑
i=0

3∑
j=0

ai,j(θ, δ)

j + 1
S[r,n,i]M(j+1,j+1)(t),

where µp
(j+1,j+1) and M(j+1,j+1)(t) are pth moment and mgf of Y(j+1,j+1), the

(j + 1)th order statistics of Y1, Y2, ..., Yj+1, j = 0, 1, 2, 3, respectively.
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3.1 Application

An interesting application of concomitants is the minimization of variance
linear unbiased estimates (MVLUE) of the location and scale parameters
when other parameters are known. Suppose that the random variables have
location parameter ν and scale parameter ω. By using the method of David
and Nagaraja (2003), the MVLUE of θ equals

θ̂ = (A′V−1A)−1(A′V−1y),

where V = (Vi,j) is the variance of the ith and j-th concomitants, V−1 is
the inverse of the matrix V, y′ is the observed value of the vector

Y′
= [Y[1,n,m,k], Y[2,n,m,k], ..., Y[n,n,m,k]]

and A and θ are defined by:

A′
=

[
1 1 . . . 1

µ[1,n,m,k] µ[2,n,m,k] . . . µ[n,n,m,k]

]
and θ

′
=
[
ν ω

]
.

Numerical methods are used to obtain the coefficients of the location and
scale parameters of the concomitants of order statistics (γi = n− i+1) when
the marginal distributions are Burr and logistic. Results appear in Tables 2
− 6.
Recall that a random variable X has a Burr XII distribution with parameters
β, λ, ν and ω if

GY (y) = 1− βλ(β +
y − ν

ω
)−λ, y > ν, β > 0, ω > 0, ν ∈ R,

and it has a logistic distribution with parameters ν and ω if

GY (y) = [1 + exp{−y − ν

ω
}]−1, y ∈ R,ω > 0, ν ∈ R.

4 A Bivariate Exponential Distribution
Exponential distribution plays an important role in all theoretical and ap-
plied fields of statistics, especially as a lifetime distribution. For this reason,
different bivariate exponential distributions have been introduced in the lit-
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Table 2. Coefficients of MVLUE of ν and ω for Burr distribution based on concomitants of
order statistics with n = 5, λ=2.65, β=0.5.

Known parameters Estimates Coefficients
θ = 0.1, δ = 0.95 ν̂ 5.4565 1.6981 -0.8747 -2.3762 -2.9036

ω̂ -17.3514 -4.9386 3.5542 8.5041 10.2318
θ = 0.3, δ = 0.75 ν̂ 3.0736 1.1058 -0.2529 -1.1705 -1.7560

ω̂ -9.4916 -2.9826 1.5044 4.5262 6.4436
θ = 0.5, δ = 0.55 ν̂ 2.2427 0.7894 -0.1299 -0.7420 -1.1602

ω̂ -6.7469 -1.9410 1.0948 3.1107 4.4824
θ = 0.7, δ = 0.35 ν̂ 1.8436 0.5882 -0.0946 -0.5224 -0.8148

ω̂ -5.4224 -1.2824 0.9713 2.3837 3.3498
θ = 0.9, δ = 0.15 ν̂ 1.6268 0.4349 -0.0861 -0.3866 -0.5890

ω̂ -4.6947 -0.7858 0.9333 1.9334 2.6139
θ = 0.2, δ = 0.25 ν̂ 4.8720 2.0030 -0.2810 -2.0892 -3.5047

ω̂ -15.4211 -5.9476 1.5912 7.5559 12.2217
θ = 0.4, δ = 0.45 ν̂ 2.6812 1.0030 -0.1542 -0.9726 -1.5574

ω̂ -8.1933 -2.6463 1.1744 3.8715 5.7938
θ = 0.6, δ = 0.65 ν̂ 1.9528 0.6400 -0.1137 -0.5853 -0.8939

ω̂ -5.7905 -1.4477 1.0413 2.5936 3.6033
θ = 0.8, δ = 0.85 ν̂ 1.5996 0.4347 -0.0929 -0.3831 -0.5583

ω̂ -4.6240 -0.7709 0.9721 1.9263 2.4964

Table 3. Coefficients of MVLUE of ν and ω for Burr distribution based on concomitants of
order statistics with n = 5, λ=4.5, β=1.5.

Known parameters Estimates Coefficients
θ = 0.1, δ = 0.95 ν̂ 5.4412 1.6673 -0.9106 -2.3813 -2.8165

ω̂ -12.2320 -3.4213 2.5959 6.0250 7.0323
θ = 0.3, δ = 0.75 ν̂ 3.1946 1.1563 -0.2684 -1.2369 -1.8456

ω̂ -6.9913 -2.2290 1.0980 3.3553 4.7669
θ = 0.5, δ = 0.55 ν̂ 2.3471 0.8562 -0.1231 -0.8006 -1.2796

ω̂ -5.0101 -1.5317 0.7548 2.3358 3.4512
θ = 0.7, δ = 0.35 ν̂ 1.9256 0.6599 -0.0780 -0.5725 -0.9350

ω̂ -4.0184 -1.0794 0.6419 1.8010 2.6549
θ = 0.9, δ = 0.15 ν̂ 1.6898 0.5108 -0.0656 -0.4312 -0.7037

ω̂ -3.4551 -0.7409 0.6026 1.4683 2.1251
θ = 0.2, δ = 0.25 ν̂ 5.1774 2.1353 -0.3053 -2.2456 -3.7619

ω̂ -11.6159 -4.5146 1.1811 5.7073 9.2421
θ = 0.4, δ = 0.45 ν̂ 2.8199 1.0815 -0.1516 -1.0475 -1.7022

ω̂ -6.1144 -2.0562 0.8221 2.9120 4.4365
θ = 0.6, δ = 0.65 ν̂ 2.0346 0.6986 -0.1048 -0.6331 -0.9952

ω̂ -4.2789 -1.1658 0.7106 1.9449 2.7892
θ = 0.8, δ = 0.85 ν̂ 1.6542 0.4819 -0.0835 -0.4178 -0.6348

ω̂ -3.3852 -0.6661 0.6563 1.4422 1.9528
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Table 4. Coefficients of MVLUE of ν and ω for Burr distribution based on concomitants of
order statistics with n = 5, λ=3.5, β=1.

Known parameters Estimates Coefficients
θ = −0.1, δ = 0.95 ν̂ 17.7638 -3.1961 -12.6796 -9.2825 8.3944

ω̂ -43.9269 8.4745 32.1915 23.7146 -20.4536
θ = −0.3, δ = 0.75 ν̂ -3.3478 -2.5611 -0.9370 1.8014 6.0444

ω̂ 8.8550 6.9060 2.8545 -3.9946 -14.6209
θ = −0.5, δ = 0.55 ν̂ -1.7301 -1.0972 -0.2158 1.0565 2.9866

ω̂ 4.8221 3.2439 1.0425 -2.1391 -6.9695
θ = −0.7, δ = 0.35 ν̂ -1.0611 -0.6555 -0.1066 0.7119 2.1112

ω̂ 3.1581 2.1371 0.7608 -1.2843 -4.7717
θ = −0.9, δ = 0.15 ν̂ -0.7044 -0.4410 -0.0797 0.5025 1.7226

ω̂ 2.2756 1.5982 0.6839 -0.7701 -3.7876
θ = −0.2, δ = 0.25 ν̂ -5.0783 -3.1280 -0.5552 2.7659 6.9956

ω̂ 13.1922 8.3213 1.8914 -6.4127 -16.9922
θ = −0.4, δ = 0.45 ν̂ -2.2833 -1.4302 -0.2656 1.347 3.6320

ω̂ 6.2044 4.0767 1.1676 -2.865 -8.5837
θ = −0.6, δ = 0.65 ν̂ -1.3623 -0.8751 -0.1843 0.8572 2.5645

ω̂ 3.9040 2.6883 0.9625 -1.6415 -5.9132
θ = −0.8, δ = 0.85 ν̂ -0.9026 -0.5954 -0.1476 0.5913 2.0543

ω̂ 2.7588 1.9876 0.8668 -0.9800 -4.6333

Table 5. Coefficients of MVLUE of ν and ω for the logistic distribution based on concomitants
of order statistics with n = 5.

Known parameters Estimates Coefficients
θ = 0.1, δ = 0.95 ν̂ 0.2005 0.1987 0.2006 0.2015 0.1986

ω̂ -1.9485 -0.6037 0.4388 1.0354 1.0781
θ = 0.3, δ = 0.75 ν̂ 0.2005 0.1984 0.2006 0.2019 0.1985

ω̂ -1.3004 -0.4907 0.1783 0.6714 0.9414
θ = 0.5, δ = 0.55 ν̂ 0.2028 0.1969 0.1978 0.2007 0.2018

ω̂ -0.9716 -0.4015 0.0806 0.4866 0.8059
θ = 0.7, δ = 0.35 ν̂ 0.2073 0.1945 0.1928 0.1979 0.2074

ω̂ -0.7784 -0.3364 0.0352 0.3755 0.7041
θ = 0.9, δ = 0.15 ν̂ 0.2144 0.1915 0.1859 0.1934 0.2148

ω̂ -0.6531 -0.2874 0.0110 0.3005 0.6290
θ = 0.2, δ = 0.25 ν̂ 0.1995 0.2001 0.2007 0.2006 0.1991

ω̂ -2.4276 -0.9997 0.2245 1.2239 1.9789
θ = 0.4, δ = 0.45 ν̂ 0.2012 0.1985 0.1993 0.2007 0.2003

ω̂ -1.2179 -0.5063 0.1036 0.6128 1.0079
θ = 0.6, δ = 0.65 ν̂ 0.2050 0.1946 0.1957 0.2006 0.2040

ω̂ -0.8071 -0.3295 0.0655 0.4013 0.6699
θ = 0.8, δ = 0.85 ν̂ 0.2118 0.1879 0.1892 0.2002 0.2109

ω̂ -0.6026 -0.2351 0.0468 0.2922 0.4987
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Table 6. Coefficients of MVLUE of ν and ω for the logistic distribution based on concomitants
of order statistics with n = 5.

Known parameters Estimates Coefficients
θ = −0.1, δ = 0.95 ν̂ 0.1996 0.1958 0.1964 0.2005 0.2077

ω̂ -5.3028 -0.4786 2.4888 2.8940 0.3986
θ = −0.3, δ = 0.75 ν̂ 0.1879 0.2006 0.2076 0.2067 0.1973

ω̂ 1.7026 2.3856 1.6929 -0.7312 -5.0499
θ = −0.5, δ = 0.55 ν̂ 0.1994 0.2002 0.2006 0.2002 0.1996

ω̂ 1.3358 0.8297 0.1858 -0.6435 -1.7077
θ = −0.7, δ = 0.35 ν̂ 0.2064 0.1971 0.1939 0.1965 0.2060

ω̂ 0.9083 0.4716 0.0407 -0.4294 -0.9912
θ = −0.9, δ = 0.15 ν̂ 0.2144 0.1928 0.1862 0.1925 0.2141

ω̂ 0.6887 0.3225 0.0079 -0.3141 -0.7050
θ = −0.2, δ = 0.25 ν̂ 0.1975 0.2008 0.2020 0.2012 0.1984

ω̂ 3.3481 2.3639 0.7102 -1.6594 -4.7628
θ = −0.4, δ = 0.45 ν̂ 0.1983 0.2006 0.2015 0.2008 0.1988

ω̂ 1.6706 1.0739 0.2600 -0.8149 -2.1895
θ = −0.6, δ = 0.65 ν̂ 0.2010 0.1996 0.1992 0.1993 0.2009

ω̂ 1.1136 0.6684 0.1388 -0.5282 -1.3926
θ = −0.8, δ = 0.85 ν̂ 0.2061 0.1973 0.1948 0.1968 0.2051

ω̂ 0.8384 0.4666 0.0824 -0.3817 -1.0058

erature. However, it is necessary to propose new bivariate exponential dis-
tributions for cases when others can not be fitted well to the real data. Here,
we introduce a new one whose marginals are alone exponential distributions.
We later show that our bivariate model performs better than competitors in
fitting real data. To operationalize it, we use (11) with marginal distributions
FX(x) = 1− e−λ1x and GY (y) = 1− e−λ2y, and obtain

HX,Y (x, y) = (1− e−λ1x)(1− e−λ2y)(1 + δe−2λ1x−2λ2y)(1 + θe−λ1x−λ2y)),

(19)

for x, y ≥ 0 and λ1, λ2 > 0,−1 < θ < 1 and 0 ⩽ δ ⩽ 1. The underlying joint
density function is given by

hX,Y (x, y) = λ1λ2e
−λ1x−λ2y

3∑
m=0

3∑
n=0

am,n(θ, δ)(1− e−λ1x)m(1− e−λ2y)n.

(20)

If the random pair (X,Y ) has the bivariate pdf (20), then
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• The conditional pdfs are given by

hX|Y (x|y) = λ1e
−λ1x

3∑
m=0

3∑
n=0

am,n(θ, δ)(1− e−λ1x)m(1− e−λ2y)n,

and

hY |X(y|x) = λ2e
−λ2y

3∑
m=0

3∑
n=0

ai,j(θ, δ)(1− e−λ1x)m(1− e−λ2y)n.

• The joint mgf of (X,Y ), for |t| < 4λ1 and |s| < 4λ2, is

MX,Y (t, s) = λ1λ2

3∑
m=0

3∑
n=0

m∑
i=0

n∑
j=0

an,m(θ, δ)
(
m
i

)(
n
j

)
(−1)i+j

(t− (i+ 1)λ1)(s− (j + 1)λ2)
.

• The Pearson’s correlation coefficient of (X,Y ) is given by

Corr(X,Y ) =

3∑
m=0

3∑
n=0

m∑
i=0

n∑
j=0

an,m(θ, δ)
(
m
i

)(
n
j

)
(−1)i+j

(i+ 1)2(j + 1)2
− 1.

• The pth conditional moments are

E(Y p|X = x) =
Γ(p+ 1)

λp
2

3∑
m=0

3∑
n=0

n∑
j=0

an,m(θ, δ)(−1)j
(
n
j

)
(1− e−λ1x)m

(j + 1)p+1
.

In particular, for the special case p = 1, we have

E(Y |X = x) =

∫ ∞

0
fY |X=x(y|x)dy

=
6θ + 12 + 4e−λ1xδ − 12e−λ1xθ + 3e−2λ1xδθ − 6e−2λ1xδ − 4e−3λ1xθδ

12λ1
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• The stress-strength value of (X,Y ) is given by

R = P (X > Y ) = λ1

3∑
m=0

3∑
n=0

m∑
i=0

n+1∑
j=0

an,m(θ, δ)
(
m
i

)(
n+1
j

)
(−1)i+j

(n+ 1)(λ1(i+ 1) + λ2j)
.

• The mean time of failure is given by

MTTF =

∫ ∞

0

∫ ∞

0
xyf(x, y)dxdy =

δθ + 4δ + 36θ + 144

144λ1λ2
.

In particular, the maximum of MTTF is 1.28
λ1λ2

at θ = −1 and δ = 0 and
minimum of MTTF is 0.73

λ1λ2
at θ = δ = 1.

Remark 2. Note that P (X > Y ) is increasing in θ and δ. Also, if X and
Y have the identical exponential distribution with mean 1

λ , then we have
P (X > Y ) = 0.5.

Now we investigate some reliability features of parallel and series systems
(see e.g., Yilmaz, 2011). Let T1:2 be the lifetime of series system having two
components. Then the survival, distribution and density of T1:2 are given by

F T1:2(t) = P (T1:2 ⩾ t) = P (min(X,Y ) ⩾ t)

= P (X ⩾ t, Y ⩾ t) = HX,Y (t, t) + 1− FX(t)−GY (t)

= (1− e−λ1t)(1− e−λ2t)(1 + δe−2λ1t−2λ2t)(1 + θe−λ1t−λ2t))

+e−λ1t + e−λ2t − 1

F1:2(t) = P (T1;2 ⩽ t) = 1− P (T1;2 ⩾ t) = 1− P (X ⩾ t, Y ⩾ t) = 1−H(t, t)

= 2− (1− e−λ1t)(1− e−λ2t)(1 + δe−2λ1t−2λ2t)(1 + θe−λ1t−λ2t))

−e−λ1t − e−λ2t

f1:2(t) = f(t) + g(t)− d

dt
H(t, t)

= {λ1e
−λ1t + λ2e

−λ2t − (λ1 + λ2)e
−(λ1+λ2)t}[1 + δe−2λ1t−2λ2t]

×[1 + θe−(λ1+λ2)t]− (λ1 + λ2)e
−(λ1+λ2)t(1− e−λ1t)(1− e−λ2t)

×{3θδe−2(λ1+λ2)t + 2δe−(λ1+λ2)t + θ}+ λ1e
−λ1t + λ2e

−λ2t.

The hazard rate and reversed hazard rate function of T1;2 = min(X,Y ) are

h1:2(t) = − d

dt
lnF 1:2(t) r1:2(t) =

d

dt
lnF1:2(t) = f1:2(t)(F1:2(t))

−1.
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Figure 1. hazard rate of T1:2

As seen in Figure 1, T1:2 doesn’t have a monotone hazard rate, but the re-
versed hazard rate of T1:2 is decreasing for all of values of its parameters,
because f1:2(t) and (F1:2(t))

−1 are decreasing.

The mean residual of T1:2 is given by:

E(T1 − t|T1 > t) =

∫ ∞

0
(x− t)

fT1(t+ x)

F T1(t)
dx

=
1

F T1(t)

∫ ∞

t
(x− t){λ1e

−λ1(x+t) + λ2e
−λ2(x+t)

− λ1λ2e
−(λ1+λ2)t

×
3∑

m=0

3∑
n=0

an,m(θ, δ)(1− e−λ1(x+t))m(1− e−λ2(x+t))n}dx

=
1

F T1(t)

∫ ∞

0
y{λ1e

−λ1(y+2t) + λ2e
−λ2(y+2t) − λ1λ2e

−(λ1+λ2)t

×
3∑

m=0

3∑
n=0

an,m(θ, δ)(1− e−λ1(y+2t))m(1− e−λ2(y+2t))n}dx

=
1

F T1(t)
{e

−2λ1t

λ1
+

e−2λ2t

λ2
− λ1λ2e

−2(λ1+λ2)t

×
3∑

m=0

3∑
n=0

m∑
i=0

m∑
j=0

e−2λ1ti−2λ2tj
an,m(θ, δ)

(
m
i

)(
n
j

)
(−1)i+j

[(i+ 1)λ1 + (j + 1)λ2]2
}.
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Now, let T2:2 be the lifetime of a parallel system. Then the distribution,
survival and density functions of T2:2 are given by

FT2:2(t) = P (T2:2 ⩽ t) = P (max(X,Y ) ⩽ t) = P (X ⩽ t, Y ⩽ t) = H(t, t)

= (1− e−λ1t)(1− e−λ2t)(1 + δe−2λ1t−2λ2t)(1 + θe−λ1t−λ2t)),

F T2:2(t) = P (T2:2 ≥ t) = 1− P (X ⩽ t, Y ⩽ t) = 1−H(t, t)

= 1− (1− e−λ1t)(1− e−λ2t)(1 + δe−2λ1t−2λ2t)(1 + θe−λ1t−λ2t)),

fT2:2(t) =
d

dt
H(t, t) (21)

= {λ1e
−λ1t + λ2e

−λ2t − (λ1 + λ2)e
−(λ1+λ2)t}[1 + δe−2λ1t−2λ2t]

×[1 + θe−(λ1+λ2)t]− (λ1 + λ2)e
−(λ1+λ2)t(1− e−λ1t)(1− e−λ2t)

×{3θδe−2(λ1+λ2)t + 2δe−(λ1+λ2)t + θ}.

The hazard rate and reversed hazard rate functions of T2;2 are given as follows

hT2:2(t) =
fT2:2(t)

1−H(t, t)

rT2:2(t) =

2∑
i=1

λie
−λit

1− e−λit
− 2δ(λ1 + λ2)e

−2(λ1+λ2)t

1 + δe−2(λ1+λ2)t
− θ(λ1 + λ2)e

−(λ1+λ2)t

1 + θe−(λ1+λ2)t
.

As we observe, rT2:2(t) is decreasing but hazard rate doesn’t have a monotone
trend. The mean residual lifetime of T2 is obtained as bellow:

E(T2 − t|T2 > t) =

∫ ∞

0
(x− t)

fT2(t+ x)

F T2(t)
dx

=
λ1λ2e

−(λ1+λ2)t

F T2(t)

∫ ∞

t
u

3∑
m=0

3∑
n=0

an,m(θ, δ)

×(1− e−λ1(u+2t))m(1− e−λ2(u+2t))ndu

=
λ1λ2

H(t, t)

3∑
m=0

3∑
n=0

m∑
i=0

m∑
j=0

an,m(θ, δ)
(
m
i

)(
n
j

)
(−1)i+j

[iλ1 + jλ2]2

×e−2λ1t(i+1)−2λ2t(j+1).
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4.1 Simulation Studies
In this section, we conduct a simulation study to highlight further properties
of the new copula. Specifically, we concentrate on the estimation its param-
eters. In order to simulate a vector (X,Y ) from the bivariate distribution
H, it is sufficient to perform following steps:

Step 1: Generate two variables U and Z independently from uniform
distributions on [0, 1].

Step 2: Calculate V = C−1
u (Z), where

Cu(v) = C(V ⩽ v|U = u) =
∂C(u, v)

∂u
.

Step 3: By the probability integral transform, we have

U
d
= F (X) ⇔ X

d
= F−1(U) V

d
= G(X) ⇔ Y

d
= G−1(V )

where d
= denotes the equality of distributions. Then, the pair (X,Y ) has the

joint distribution H with marginal distributions F and G.
The software R was used for simulation and estimation. Now, we gener-
ate data from the bivariate distribution in (19) with four sets of parameters
(θ, δ, λ1, λ2) = (0.85, 0.5, 0.5, 0.3), (θ, δ, λ1, λ2) = (0.45, 0.2, 2, 1), (θ, δ, λ1, λ2) =
(−0.55, 0.35, 4, 3) and (θ, δ, λ1, λ2) = (−0.75, 0.85, 1.5, 2.5) with sample sizes
50, 150 and 200. All simulations consist of 1000 replications. In each case,
we estimate parameters and compute the average estimates (AE), biases and
the mean squared errors (MSE). Note that, to estimate the parameters in a
bivariate distribution, the method of inference function for margins (IFM)
(see Joe, 1997) is employed. Results are given in Table 7. It is seen that
the performance of estimates are satisfactory. Moreover, as the sample size
increases, MSE decreases for all parameters and the bias decreases in most
cases.

4.2 Data Analysis
In this section, to examine the performance of our proposed distribution,
we reanalyze the following two data sets. We consider several families of
bivariate exponential distributions, such as ACVBE, Freund, Gumbel type
II, Gumbel type III, Johnson-Kotz, Marshal-Olkin type A, Marshal-Olkin
type B and Sarkar mentioned in Balakrishnan and Lai (2009). Also we
consider the bivariate copula with exponential distributions in margins, such
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Table 7. AE, bias, and MSE based on 1000 simulations of the bivariate distribution in (19)
for n=50, 150 and 200.

(θ, δ, λ1, λ2) = (0.85, 0.5, 0.5, 0.3) (θ, δ, λ1, λ2) = (0.45, 0.2, 2, 1)

n AE bias MSE AE bias MSE
50 θ̂ 0.7506 -0.0994 0.2205 0.3716 -0.0784 0.3696

δ̂ 0.6086 0.1086 0.5042 0.4560 0.2560 1.0792
λ̂1 0.5021 0.0021 0.0710 1.9928 -0.0072 0.2819
λ̂2 0.3043 0.0043 0.0431 0.9914 -0.0085 0.1403

150 θ̂ 0.8129 -0.0371 0.0116 0.4110 -0.0390 0.1176
δ̂ 0.5358 0.0358 0.0246 0.3833 0.1833 0.3356
λ̂1 0.4991 -0.0009 0.0407 2.0062 0.0062 0.1638
λ̂2 0.2987 -0.0013 0.0244 1.0032 0.0032 0.0819

200 θ̂ 0.8281 -0.0219 0.0032 0.4228 -0.0272 0.0767
δ̂ 0.5112 0.0112 0.0061 0.3412 0.1412 0.2141
λ̂1 0.4994 -0.0006 0.0353 2.0014 0.0014 0.1415
λ̂2 0.3002 0.0002 0.0212 1.0007 0.0007 0.0707

(θ, δ, λ1, λ2) = (−0.55, 0.35, 4, 3) (θ, δ, λ1, λ2) = (−0.75, 0.85, 1.5, 2.5)

n AE bias MSE AE bias MSE
50 θ̂ -0.4492 0.1008 0.4666 -0.5726 0.1774 0.4238

δ̂ 0.5289 0.1749 1.7340 0.5615 -0.2885 1.6080
λ̂1 3.9716 -0.0284 0.5625 1.5089 0.0089 0.2135
λ̂2 3.0171 0.0171 0.4270 2.5168 0.0168 0.3562

150 θ̂ -0.5586 -0.0086 0.1475 -0.6748 0.0752 0.1152
δ̂ 0.5021 0.1521 0.5619 0.5661 -0.2839 0.5058
λ̂1 3.9862 -0.0138 0.3257 1.5067 0.0067 0.1231
λ̂2 3.0015 0.0015 0.2451 2.4929 -0.0071 0.2036

200 θ̂ -0.5578 -0.0078 0.1048 -0.6773 0.0727 0.0765
δ̂ 0.4716 0.1216 0.3909 0.6073 -0.2427 0.3344
λ̂1 4.0017 0.0017 0.2830 1.5004 0.0004 0.1061
λ̂2 3.0082 0.0082 0.2128 2.4964 -0.0036 0.1765

© 2018, SRTC Iran



Z. Sharifonnasabi, M. H. Alamatsaz and I. Kazemi 295

Table 8. Parameter Estimates
Model Param. Est. (Std. Err.) Model Param. Est. (Std. Err.)

Our Model θ -0.7617(0.1886) Freund α1 0.0006 (0.0003)
δ 0.8885(0.9964) α2 0.0247(0.0021)
λ1 0.0208(0.0018) λ2 0.0013(0.0001)
λ2 0.0014(0.0001) λ3 0.0023(0.0013)

Gumbel type II θ -0.6703(0.1978) FGM θ -0.6703 (0.1978)
λ1 0.0014(0.0001) λ1 0.0014 (0.0001)
λ2 0.0208(0.0017) λ2 0.0209 (0.0017)

Marshal-Olkin A λ3 -0.0185(0.0026) ACBVE λ1 0.0196(0.0018)
λ1 0.0197 (0.0026) λ2 0.0005(0.0003)
λ2 0.0264 (0.0022) λ3 0.0008 (0.0003)

Plakett θ 0.4843 (0.1214) Frank θ -1.5444(0.5357)
λ1 0.0014 (0.0001) λ1 0.0014 (0.0001)
λ2 0.0208 (0.0017) λ2 0.0208 (0.0017)

as AMH, Clayton, FGM, Frank, Galambos, Gumbel-Hugaard and Plakett.
To select the best fitted model, we use AIC = −2 logL+2k (Akaikk, 1974),
BIC = −2 logL+k log n (Schwarz, 1978), AICC = −2 logL+2kn/(n−d−1)
(Hurvich and Tsai, 1989), HQIC = −2 logL + +2k log log n (Hannan and
Quinn, 1979) and CAIC = −2 logL+k(log n+1) (Genest et al., 2008) where
n is the number of observations, k is number of parameters in the model and
L is the maximum value of the likelihood function.

The Bone Marrow Transplantation (BMT) Study
The BMT data set is available in Klein and Moeschberger (2003). ‘T2’ rep-
resents disease free survival time (time to relapse, death or end of study)
and ‘TP ’ represents time to return of platelets to normal levels. The spear-
man and kendall correlation coefficient of data are -0.2544 and -0.1806 with
p-values 0.0027 and 0.0020, which implies that the dependence between ‘T2’
and ‘TP ’ is statistically significant. The estimated parameters, obtained by
the maximum likelihood estimation (MLE) method, with their standard er-
rors are given in Table 10. Estimation results are given in Table 8 with
standard errors in parentheses. Moreover, Table 9 reports AIC, AICC, BIC,
HQIC, and CAIC values of several fitted models. Also, we use the procedure
in Appendix A of Genest et al. (2008) to test that the our model is a good
fit to the data or not. P-values are repoterd in Table 9. Results indicate
that our proposed model fits better to the data compared to rival models.
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Table 9. Comparison of some bivariate exponential distributions and bivariate copulas with
exponential margins

Model AIC AICC BIC HQIC CAIC p-value
Our Model 3351.2 3351.5 3361.9 3355.95 3366.88 0.6931

Gumbel type II 3438.2 3438.4 3446.9 3440.77 3447.72 0.5100
Freund 3406.4 3406.7 3418.0 3409.83 3419.10 0.4432

Marshal-olkin A 3353.8 3354.0 3362.6 3356.37 3363.32 0.3812
ACBVE 3443.2 3443.4 3451.9 3445.77 3452.72 0.3861
FGM 3438.2 3438.4 3446.9 3440.77 3447.72 0.5114
Frank 3437.8 3438.0 3446.6 3440.37 3447.32 0.4100
Plakett 3438.2 3438.4 3447.0 3440.77 357.723 0.3977

So, an adequate bivariate distribution function for the data is given by

H(x, y) = (1− e−0.0208x)(1− e−0.0014y)(1 + 0.8885e−0.0416xe−0.0028y)

×(1− 0.7617e−0.0208xe−0.0014y); x > 0, y > 0

Note that the the spearman ans kendall correlations of the fitted model are
-0.2002 and -0.1339 which are close to the sample correlations.

Myeloma Data
The data is taken from Krall, Uthoff and Harley (1975) in which 65 pa-
tients alkylation agents were treated. In the Myeloma data set, the variable
”Time” represents the survival time in months from diagnosis and ’Age’ rep-
resents age at diagnosis in years. As before, we estimate the parameters by
maximum likelihood method that are given in Table 10. As seen in Table
11, results of our model has the lowest AIC, AICC, BIC, HQIC and CAIC,
implying that the proposed model is the best one to fit the data. Note that
we also checked Clayton, Galambos, Gumbel type III, Gumbel-Hugaard,
Johnson-Kotz, Marshal-Olkin type B and Sarkar which did not fit the data
well. Thus, to save the space, we have not reported them in Tables 10 and 11.

Concluding Remarks
In this paper, we proposed a class of copulas which was originated from our
earlier work (Sharifonnasabi et al., 2018). We constructed a new bivariate
distribution and studied its marginals together with the joint distribution
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Table 10. Estimation results of various fitted models
Model Param. Est. (Std. Err.) Model Param. Est. (Std. Err.)

Our Model θ -0.1381(1.1931) Freund α1 0.0407(0.0054)
δ 0.7133(1.7726) α2 0.0057 (0.0020)
λ1 0.0428(0.0103) λ1 0.04969(0.0176)
λ2 0.0167(0.0021) λ2 0.0227(0.0030)

Gumbel type II θ -0.3674(1.4152) Plakett θ 0.3941(0.3279)
λ1 0.0397(0.0091) λ1 0.0365(0.0068)
λ2 0.0166(0.0020) λ2 0.0166(0.0020)

Marshal-Olkin A λ1 0.0474(0.0059) Frank θ -1.5915(2.5937)
λ2 0.0405(0.0084) λ1 0.0373(0.0086)
λ3 -0.025(0.0083) λ2 0.0166(0.0020)

ACVBE λ1 0.02435(0.0063) AMH θ 0.5322(1.3800)
λ2 0.0034(0.0016) λ1 0.0394(0.0068)
λ3 0.0194(0.0037) λ2 0.0166(0.0021)

FGM θ -0.3676(1.4153)
λ1 0.0397(0.0091)
λ2 0.0166( 0.0021)

Table 11. Comparison of some bivariate exponential distributions and bivariate copulas with
exponential margins

Model AIC AICC BIC HQIC CAIC
Our Model 1189.7 1190.37 1198.4 1193.13 1202.4

Gumbel type II 1211.7 1212.1 1218.2 1214.27 1221.22
Marshal-olkin A 1201.8 1202.2 1208.3 1204.37 1211.32

Freund 1195.1 1195.7 1203.8 1198.53 1207.80
ACBVE 1193.2 1193.6 1199.7 1195.77 1202.72
AMH 1211.7 1212.1 1218.2 1214.27 1221.22
FGM 1211.7 1212.1 1218.2 1214.27 1221.22
Frank 1211.6 1212.0 1218.1 1214.17 1221.12
Plakett 1211.4 1211.8 1217.9 1213.97 1220.92
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of concomitants of its generalized ordered statistics. Moreover, we derived
several explicit expressions for their moments and mgfs. It is shown that
these expressions can be written as functions of moments and mgfs of the
ordinary ordered statistics. We utilized these moments to obtain the mini-
mum variance linear unbiased estimate of the location and scale parameters
of the concomitants of ordered statistics from Burr and logistic distributions.
In addition, in particular, we presented a bivariate exponential distribution
whose univariate marginal distributions are exponential and investigated its
different properties. One of the most important properties of this bivari-
ate exponential distribution includes its hazard rate for parallel and series
systems that are not monotone and thus this flexibility allows one to use
this new bivariate model for different data sets. Results from the simulation
studies show that as sample size increases, MSE decreases for all parame-
ters and the bias decreases in most cases. Finally, we applied our model to
two real-life data sets to show the potential of our new model in practical
applications.
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