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Abstract. In this paper, a four parameters extension of the generalized
Lindley distribution is introduced. The new distribution includes the power
Lindley, Lindley, generalized (Stacy) gamma, gamma, Weibull, Rayleigh,
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1 Introduction
The Lindley distribution, with probability density function (pdf)

f(x; θ) =
θ2(1 + x)e−θx

1 + θ
, x > 0, θ > 0, (1)

was introduced by Lindley (1958). Ghitany et al. (2008) investigated Lindley
distribution in the context of reliability analysis.
∗ Corresponding author
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Seven generalization of the Lindley distribution are proposed by some
authors as follows:

• Zakerzadeh and Dolati (2009) introduced a generalized Lindley distri-
bution with the pdf

f(x;α, θ, γ) =
θα+1xα−1(α+ γx)e−θx

(θ + γ)Γ(α+ 1)
, x > 0, α, θ, γ > 0. (2)

The distribution in the case α = γ = 1 is reduced to the Lindley
distribution.

• Ghitany et al. (2011) introduced the weighted Lindley distribution
with the pdf

f(x;α, θ) =
θα+1

(θ + α)Γ(α)
xα−1(1 + x)e−θx, x > 0, α, θ > 0, (3)

which the Lindley distribution is obtained if α = 1.

• Ghitany et al. (2012) investigate the Marshall-Olkin extended Lindley
distribution with the pdf

f(x;α, θ) =
αθ2(1 + θ)(1 + x)e−θx{

(1 + θ)− (1− α)(1 + θ + θx)e−θx
}2 ,

x > 0, 0 < α 6 1, θ > 0. (4)

Note the distribution in the special case α = 1 is reduced to the Lindley
distribution.

• Shanker and Mishra (2013) introduced the quasi Lindley distribution
with the pdf

f(x;α, θ) =
θ(α+ xθ)

α+ 1
e−θx, x > 0, α > −1, θ > 0. (5)

This distribution in the case α = θ, is changed to the Lindley distribu-
tion.

• Ghitany et al. (2013) introduced the power Lindley distribution with
the pdf

f(x; θ, β) =
βθ2

θ + 1
(1 + xβ)xβ−1 exp

{
−θxβ

}
, x > 0, θ, β > 0, (6)

were in the special case β = 1 is reduced to the Lindley distribution.
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• Warahena-Liyanage and Pararai (2014) introduced the exponentiated
power Lindley distribution with the pdf

f(x;β, θ, w) =
βθ2w(1 + xβ)xβ−1e−θx

β

(θ + 1)

{
1−

(
1 +

θxβ

θ + 1

)
e−θx

β

}w−1

,

x > 0, α, θ, w > 0, (7)

were in the special case β = w = 1 is reduced to the Lindley distribu-
tion.

• Pararai et. al. (2015) introduced the beta exponentiated power Lindley
distribution with the pdf

f(x;β, θ, w, a, b) =
βθ2w(1 + xβ)xβ−1e−θx

β

(θ + 1)

{
1−

(
1 +

θxβ

θ + 1

)
e−θx

β

}wa−1

×
[
1−

{
1−

(
1 +

θxβ

θ + 1

)
e−θx

β

}w]b−1

, x > 0, α, θ, w, a, b > 0,

(8)

were in the special case β = w = a = b = 1 is reduced to the Lindley
distribution.

The current article offers a distribution which generalizes the generalized
Lindley distribution (2) and it is based on a certain mixture of two generalized
gamma (Stacy gamma) distributions.

The purpose of this paper is to develop a four-parameter alternative
to several lifetime distributions including the Lindly, genearlized Lindly,
power-Lindly, generalized gamma, gamma, Weibull, exponentil, exponen-
tiated Lindley, Rayleigh and half-normal distributions. In this context, we
propose and develop the statistical properties of the Extended Generalized
Lindley (EGL) distribution and show that it is a far better model for relia-
bility analysis. Finally, applications of the model to real data sets in order
to illustrate the applicability and usefulness of the EGL distribution are pre-
sented.

The paper is organized as follows:
Section 2 introduces an extended generalized Lindley distribution and presents
its basic properties including the behaviour of the density and hazard rate
functions, and some results on stochastic orderings. The moments of EGL
distribution, the moment generating function (mgf) and the characteristic
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function are derived in Section 3. Mean residual function and scaled total
time are obtained in Section 4 together with Lorenz curve and Bonferroni
curve which are obtained in Section 5. Section 6 discusses a bivariate deriva-
tion of the proposed model and then the estimation of parameters is discussed
in Section 7. In Section 8, we present the simulation issues of the extended
generalized Lindley distribution. An application of the EGL distribution and
comparing with other distributions, are given in Section 9.

2 Definition and Some Properties
In this section, we introduce an extended generalized Lindley distribution
and study its basic properties.

Assume

fgg(x;α, β, θ) =
β θα xαβ−1 e−θ x

β

Γ(α)
, x > 0, α, β, θ > 0, (9)

is the density function of the generalized gamma (Stacy gamma) distribution,
denoted by GG(α, β, θ ). Let V1 and V2 be two independent random variables
distributed according to GG(α, β, θ) and GG(α + 1, β, θ), respectively. For
γ > 0, consider the random variable X = V1 with probability θ

θ+γ , and
X = V2 with probability γ

θ+γ . Then density function of X is as follows

f(x;α, β, θ, γ) =
e−θ x

β
β{αxαβ +γ x(α+1)β} θα+1

x(γ + θ)Γ(α+ 1)
, x > 0, α, β, θ, γ > 0.(10)

We say that the random variable X has an extended generalized Lindley
(EGL) distribution, if X has the density function defined by (10) and denote
the extended generalized Lindley distribution with the parameters α, β, θ and
γ by EGL(α, β, θ, γ). Note that if Y has the generalized Lindley distribution,
then X = Y 1/β has EGL(α, β, θ, γ); hence the EGL distribution can be
consider as a power generalized Lindley distribution.

2.1 Special Cases of the EGL Distribution
The EGL distribution contains a large number of distributions. Here, we
consider some special cases:

(a) For β = 1, the EGL distribution reduces to the generalized Lindley
distribution (2) with parameters α, θ and γ;
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(b) For α = γ = 1, the EGL distribution reduces to the power Lindley
distribution with parameter θ and β, Equation (6);

(c) For α = β = γ = 1, the EGL distribution reduces to the density
function of the Lindley distribution with parameters θ, Equation (1);

(d) For γ = 0, the EGL distribution reduces to the generalized gamma
(Stacy gamma) distribution with parameters α, β and θ, Equation (9);

(e) For γ = 0 and β = 1, the EGL distribution reduces to the gamma
distribution with parameters α and θ;

f(x;α, θ) =
θα xα−1 e−θx

Γ(α)
,

(f) For α = 1, γ = 0, the EGL distribution reduces to the Weibull distri-
bution with parameters β and θ;

f(x;β, θ) = βθ xβ−1 e−θ x
β
, x > 0,

(g) For α = 1, β = 2, γ = 0, the EGL distribution reduces to the Rayleigh
distribution with parameter θ;

f(x; θ) = 2θxe−θ x
2
, x > 0,

(h) For α = β = 1 and γ = 0, the EGL distribution reduces to the expo-
nential distribution;

f(x; θ) = θ e−θx, x > 0,

(i) For α = 1
2 , β = 2, γ = 0, the EGL distribution reduces to the half-

normal distribution with parameter 1√
2θ

;

f(x; θ) =
2
√
θ√
π

exp
{
−θ x2

}
, x > 0,
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Figure 1. Plot of the pdf of the EGL distribution for some selected parameters α, β, θ and γ.

2.2 Shape

Figure 1 shows the pdf of the EGL distribution for some selected parameters
α, β, θ and γ. This figure shows that the EGL distribution can be used for
left-skewed, right-skewed and symmetric data.

Let h(x) = f(x)
1−F (x) be the hazard rate function of the random variable X

distributed according to EGL(α, β, θ, γ). Then h(x) has different behaviour
depending on its parameters.

Figure 2 shows the hazard rate function of the EGL distribution for some
selected parameters α, β, θ and γ.
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Figure 2. Plot of the hazard function of the EGL distribution for some selected parameters α, β, θ
and γ.

2.3 Stochastic Orders

A random variable X is said to be stochastically smaller than Y (denoted
by X ≺s Y ), if FX(t) > FY (t) for all t.

Two stronger criterions are the hazard rate order (denoted by X ≺hr

Y) if hX(t) > hY (t), for all t, and the likelihood ratio order (denoted by
X ≺lr Y ), if fX(t)/fY (t) is decreasing in t. Note that

X ≺lr Y =⇒ X ≺hr Y =⇒ X ≺s Y ;

for details of the proof, see Shaked and Shanthikumar (1994).
Let Xi be a random variable distributed according to (10) with the pa-

rameters (αi, βi, θi, γi), for i=1, 2. Then

d

dy
log

{
fX1(x)

fX2(x)

}
=

d

dx
[log fX1(x)− log fX2(x)]

=
β1α1 − β2α2

x
+
β2θ2 x

β2 −β1θ1 xβ1
x

+
β1γ1 x

β1−1

(α1 + γ1 xβ1)
− β2γ2 x

β2−1

(α2 + γ2 xβ2)
. (11)
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Clearly, if α1 = α2 and β1 = β2, then (11) is negative when θ1 > θ2 and
γ1 6 γ2.
When θ1 = θ2 , γ1 = γ2 , β1 = β2, it can be shown that the expression (11)
is negative for α1 6 α2 .
Theorem 1. Let X1 and X2 be two random variables having the EGL dis-
tribution with the parameters (αi, βi, θi, γi), i=1, 2. Then the followings hold

i) If θ1 = θ2, γ1 = γ2, β1 = β2 and α1 6 α2, then X1 ≺lr X2, X1 ≺hr X2

and X1 ≺s X2.

ii) If α1 = α2, β1 = β2, θ1 > θ2 and γ1 6 γ2, then X1 ≺lr X2, X1 ≺hr X2

and X1 ≺s X2.

3 Moment
The rth moment of the EGL distribution can be obtained as

µr = E[X
r]

=
θ

−r
β Γ(α+ r

β )

β(θ + γ)Γ(α+ 1)
{αβθ + γ(αβ + r)} , r > −αβ. (12)

Using (12), the expected value is given by

µ = E[X] =
θ

−1
β Γ(α+ 1

β )

β(θ + γ)Γ(α+ 1)
{αβθ + γ(αβ + 1)}. (13)

3.1 Moment Generating Function and Characteristic Func-
tion

In the current section, the moment generating and characteristic function of
the four parameters EGL distribution are derived.

We know that

M(t) = E[exp{tX}] =
∞∑
n=0

tn

n!
E [X

n].

Hence using (12), the moment generating function of the EGL distribution
is given by

M(t) =

∞∑
n=0

tn θ
−n
β Γ(α+ n

β )

n!β(θ + γ)Γ(α+ 1)
{αβθ + γ(αβ + n)},
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Also the characteristic function of EGL distribution defined by ϕ(t) =
E[exp{itX}] takes the form

ϕ(t) =

∞∑
n=0

(it)n θ
−n
β Γ(α+ n

β )

n!β(θ + γ)Γ(α+ 1)
{αβθ + γ(αβ + n)},

where i =
√
−1 is the imaginary number.

4 Mean Residual Life Function and Scaled Total
Time

In this section, the mean residual life function and scaled total time of the
EGL distribution are given.

4.1 Mean Residual Life Function

Another important representation for a random variable is the mean residual
life (MRL) function defined by

m(t) = E[X − t|X > t] =

∫∞
t xf(x)dx

F̄ (t)
− t =

∫∞
t F̄ (x)dx

F̄ (t)
,

where F̄ (x) = 1− F (x) is the survival function.
The MRL function as well as failure rate function is very important since

each of them can be determined a unique corresponding life time distribution.

Theorem 2. The MRL function of the EGL distribution is

m(t) =
θ

−1
β

{
αθΓ(α+ 1

β , θ t
β) + γΓ(α+ 1 + 1

β , θ t
β)
}

αθΓ(α, θ tβ) + γΓ(α+ 1, θ tβ)
− t.

Proof. We have

f(x;α, β, θ, γ) =
θ

θ + γ
fgg(x;α, β, θ) +

γ

θ + γ
fgg(x;α+ 1, β, θ),

and thus with some elementary algebraic calculations, the proof is completed.
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4.2 Scaled Total Time Function

The scaled total time function is defined by

SF [F (t)] =
1

µ

t∫
0

F̄ (u)du.

If F (t) is the distribution function of the EGL(α, β, θ, γ) distribution,
then

SF [F (t)] =
1

µ

[{
t

(γ + θ)Γ(α+ 1)

}{
αθΓ(α, θ tβ)− γΓ(α+ 1, θ tβ)

}
−

{
(θ)

− 1
β

(γ + θ)Γ(α+ 1)

}
Γ

(
1

β
+ α, θ tβ

)
− γΓ

(
1

β
+ α+ 1, θ tβ

)]
,

where µ is obtained from (13).

5 Lorenz and Bonferroni Curves
In this section, we give the Lorenz and Bonferroni curves for our proposed
distribution.

5.1 Lorenz Curve

The Lorenz curve for a positive random variable X is defined as the graph
of the ratio

LF (F (y)) =
1

µ

y∫
0

uf(u)du,

against F (x) with the properties L(p) 6 p, L(0) = 0 and L(1) = 1. If X
represents annual income, L(p) is the proportion of total income that accrues
to individuals having the 100p% lowest incomes.

If all individuals earn the same income then L(p) = p for all p. The
area between the line L(p) = p and the Lorenz curve may be regarded as a
measure of inequality of income, or more generally, of the variability of X,
see Gail and Gastwirth (1978) and Dagum (1985) for extensive discussion of
Lorenz curves.
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Theorem 3. The Lorenze curve of EGL distribution be given by

LF (F (y)) = 1−
αβθΓ(α+ 1

β , θ y
β) + βγΓ(α+ 1

β + 1, θ yβ)

(γ + αβθ + αβγ)Γ(α+ 1
β )

, (14)

Proof. We have

f(x;α, β, θ, γ) =
θ

θ + γ
fgg(x;α, β, θ) +

γ

θ + γ
fgg(x;α+ 1, β, θ),

and

µ =
θ

−1
β (γ + αβγ + αβθ)Γ(α+ 1

β )

Γ(α+ 1)β(θ + γ)
.

Therefore

LF (F (y)) =
1

µ

[
θ

θ + γ
θ

−1
β

{
Γ(α+ 1

β )− Γ(α+ 1
β , θ y

β)

Γ(α)

}

+
γ

θ + γ
θ

−1
β

{
Γ(α+ 1 + 1

β )− Γ(α+ 1 + 1
β , θ y

β)

Γ(α+ 1)

}]

= 1−

{
αβθΓ(α+ 1

β , θ y
β) + βγΓ(α+ 1

β + 1, θ yβ)

(γ + αβθ + αβγ)Γ(α+ 1
β )

}
.

5.2 Bonferroni Curve
The Bonferroni curve has many applications not only in economics to study
income and poverty, but also in other fields like reliability, medicine and
insurance. The Bonferroni curve BF [F (y)] is given by

BF [F (y)] =
1

µF (y)

y∫
0

uf(u)du.

Therefore the Bonferroni curve of F that follows the EGL distribution can
be obtained via the expression BF [F (y)] = LF (F (y))/F (y) where

F (y) =
(γ + θ)Γ(α+ 1)− θαΓ(α, θ yβ)− γΓ(α+ 1, θ yβ)

(γ + θ)Γ(α+ 1)
.
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6 The Bivariate Case
In this section, we provide a family of bivariate distributions whose univari-
ate marginals are the extended generalized Lindley distributions. For this,
let (V1, V2) and (W1,W2) be two vectors of independent random variables
distributed according to the GG(α, β, θ) and GG(α + 1, β, θ), respectively.
For γ > 0, consider the random pair (X1, X2) = (V1, V2) with the probability
θ

θ+γ , and (X1, X2) = (W1,W2) with the probability γ
θ+γ . It is then easy to

verify that the joint density function of the pair (X1, X2) is given by:

f(x1, x2) =
θ2α+1 β2

{
α2 (x1x2)

αβ−1+ θγ(x1x2)
(α+1)β−1

}
(θ + γ) Γ(α+ 1)2

× exp{−θ(x1β +x2
β)}, (15)

where x1, x2 > 0 and α, β, θ, γ > 0.
Also note that the joint density function (15), may be written as the

following model:

f(x1, x2) =
θ{α2+γθ (x1x2)

β}
(θ + γ)α2

fgg(x1;α, β, θ)fgg(x2, α, β, θ). (16)

When γ = 0, the random variables X1 and X2 become independent and the
bivariate density function (16), reduces to the product of two generalized
gamma density functions with the same parameters. The following proposi-
tion gives the mixture representation of the conditional density functions of
(15).

Theorem 4. If X1 and X2 are jointly distributed according to (16), then the
conditional density function of Xj given Xi = xi; denoted by f j|i(xj |xi), is
given by:

f j|i(xj |xi) =
α

α+ γ xiβ
fgg(xj , α, β, θ) +

γ xi
β

α+ γ xiβ
fgg(xj , α+ 1, β, θ), (17)

Proof. Considering the joint density function of (X1, X2) in (16) and the
marginal density function of Xi, i = 1, 2, in (10), using the relation

f j|i(xj |xi) =
f(xi, xj)

f(xi)
,

the proof is completed.
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Simple calculations show that for each positive integer m and n, the
following expression for the moments could be obtained

E(X1
nX2

m) =
Γ(α+ n

β )Γ(α+ m
β )

Γ(α+ 1)2(θ + γ) θ
m+n

β

{
α2 θ + γ

(
α+

n

β

)(
α+

m

β

)}
.

A bivariate distribution is said to be positively likelihood ratio dependent
(PLRD) if the density function f(x, y) satisfies

f(x1, y1)f(x2, y2) > f(x1, y2)f(x2, y1),

for all x1 > x2 and y1 > y2. For the bivariate density function (16), the
above inequality is equivalent to

(x1
β −x2

β)(y1
β − y2

β) > 0.

The PLRD has several results in particular, it implies P (X1 6 x|X2 = y)
is non increasing in y for all x; and similarly P (X2 6 y|X1 > x) is non
increasing in x for all y; This property is called positive regression dependent
(PRD).

7 Different Methods for Estimating

In this section, maximum likelihood and minimum spacing distance estima-
tors of the parameters of the EGL distribution are discussed.

7.1 Maximum Likelihood Estimation

In this part the maximum likelihood estimators of EGL(α, β, θ, γ) are con-
sidered. If X1, . . . , Xn is a random sample from X distributed according to
EGL, then the log-likelihood function, l(α, β, θ, γ) is:

l(α, β, θ, γ) = n(α+ 1) log θ − n log(γ + θ)− n log Γ(α+ 1)

+ (αβ − 1)
∑

log xi +
∑

log(α+ γ xi
β)− θ

∑
xi
β +n log β,
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Therefore, the log-likelihood equations are

∂l

∂α
= n log θ − nψ(α+ 1) + β

∑
log xi+

∑ 1

α+ γ xiβ
= 0, (18)

∂l

∂β
= α

∑
log xi+

∑ γ(log xi)xi
β

α+ γ xiβ
− θ

∑
xi
β log xi+

n

β
= 0, (19)

∂l

∂θ
=

n(α+ 1)

θ
− n

γ + θ
−
∑

xi
β = 0, (20)

∂l

∂γ
=

n∑
i=1

xi
β

α+ γ xiβ
− n

γ + θ
= 0. (21)

And the second derivatives are

∂2l

∂α2
= −nψ(α+ 1)−

n∑
i=1

1

(α+ γ xiβ)
2 ,

∂2l

∂β2
=

−n
β2

− θ
∑

(log xi xi
β)

2
+

n∑
i=1

αγ xi
β (log xi)

2

(α+ γ xiβ)
2 ,

∂2l

∂θ2
=

−n(α+ 1)

θ2
+

n

(γ + θ)2
,

∂2l

∂γ2
=

n∑
i=1

xi
2β

(α+ γ xiβ)
2 +

n

(γ + θ)2
,

where ψ(α) = d
dα log Γ(α) is the digamma function.

The maximum likelihood estimates α̂, β̂, θ̂, and γ̂ for the parameters α,
β, θ, γ, respectively, are obtained by solving iteratively Equations (18)-(21).

7.2 Minimum Spacing Distance Estimator
In this subsection we provide the minimum spacing distance estimator (MSDE)
of the extended generalized Lindley distribution. Let X1, . . . , Xn be a ran-
dom sample from a continuous population with the cdf Fθ, θ ∈ Θ ⊂ Rk with
support on R. Let the order statistics be denoted by Y1, . . . , Yn. Define

Di(θ) = Fθ(Yi)− Fθ(Yi−1), i = 1, . . . , n+ 1,
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where Fθ(Y0) = 0 and Fθ(Yn+1) = 1. The MSDE of θ is obtained by
minimizing of

T (θ) =

n+1∑
i=1

h

(
Di(θ),

1

n+ 1

)
,

over Θ, in which h(x, y) is an appropriate distance. Two choices of h(x, y) are
|x− y| and log x− log y|, which are called “absolute” and “absolute log” dis-
tance, respectively. These estimators are called “minimum spacing absolute
distance estimator” (MSADE) and “minimum spacing absolute log distance
estimator” (MSALDE). This estimation method was originally explored by
Torabi (2008). We illustrate in the next sections that this method can be
used quite successfully for the extended generalized Lindley distribution.

8 Simulation

We simulate n =20, 30, 50, 100 and 200 times the extended generalized
Lindley distribution for α = 6, β = 0.5, θ = 2.5 and γ = 2.5. For each
sample size, we compute the MLEs, MMEs, MSADEs and MSALDEs of the
parameters. We repeat this process 10000 times and compute the average
estimate (AE) and MSE. The results are reported in Table 1. The required
numerical evaluations were implemented using the R software through the
package (stats4), command mle with the L-BFGS-B method and command
nlminb.

Comparing the performance of all estimators, it is observed that for all
methods, the MSEs decrease as the sample size increases. Note that, the
performances of the MSLDEs are the best as far as the MSE is concerned, but
after this method, the MLEs and the MMEs performances are considerable.
Considering all the points, we recommend to use the MSALDE for estimating
of the parameters.
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Table 1. Estimated AE and MSE of MLE, MME, MSADE and MSALDE of the
parameters based on 10000 simulations of the extended generalized Lindley distribution
for α = 6, β = 0.5, θ = 2.5 and γ = 2.5 and with n = 20, 30, 50, 100 and 200.

MLE MME MSADE MSALDE

n AE MSE AE MSE AE MSE AE MSE

20 α 16.139 29.516 5.772 2.367 5.775 1.091 8.172 306.74
β 0.811 0.649 0.580 0.029 0.501 0.018 0.510 0.041
θ 10.890 23.251 2.178 0.460 2.502 0.357 4.600 216.07
γ 65.320 599.79 2.504 0.016 2.638 2.417 4.206 235.10

30 α 14.228 26.06 5.933 1.441 5.797 1.007 8.127 237.17
β 0.726 0.511 0.556 0.017 0.504 0.014 0.515 0.038
θ 9.365 20.63 2.282 0.270 2.472 0.322 4.462 164.95
γ 42.479 491.29 2.507 .009 2.609 1.346 4.685 386.83

50 α 15.061 26.040 6.009 0.613 5.829 1.402 7.291 141.68
β 0.629 0.398 0.527 0.006 0.507 0.013 0.529 0.037
θ 9.980 20.802 2.394 0.096 2.478 0.410 3.81 97.67
γ 33.921 441.34 2.506 0.005 2.571 0.692 4.67 292.60

100 α 13.091 20.87 6.032 0.129 5.905 1.603 7.998 139.21
β 0.558 0.285 0.510 .001 0.505 .009 0.5225 0.032
θ 8.210 16.47 2.465 0.010 2.511 0.509 4.279 88.95
γ 3.108 27.94 2.50 .001 2.69 10.03 5.517 334.61

200 α 11.800 17.46 6.007 0.073 5.999 2.431 7.067 99.54
β 0.503 0.197 0.504 0.001 0.502 0.005 0.511 0.021
θ 7.047 12.97 2.482 0.003 2.561 1.012 3.899 64.82
γ 2.202 1.303 2.502 0.001 2.604 3.567 5.092 256.25

9 Application

In this section, we use a real data set to show that the extended generalized
Lindley distribution can be a better model than the generalized Lindley (GL),
power Lindley (PL), Lindley (L), generalized gamma (GG), gamma (G),
Weibull (W), exponential (E), Rayleigh (R), half-normal (HN), quasi Lindley
(QL), Marshall-Olkin extended Lindley (MOEL) and weighted Lindley (WL)
distributions.

In order to compare the models, we used following four criterions: Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), Consis-
tent Akaike Information Criterion(CAIC), HQIC (Hannan-Quinn informa-
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tion criterion) which are defined as follows:

AIC = −2 log L̂+ 2k, BIC = −2 log L̂+ k log n,

CAIC = AIC+
2k(k + 1)

n− k + 1
, HQIC = −2 log L̂+ 2 log{log(n)}k,

where k is the number of free parameters in the model and n is the sample
size. For fitting a data set, the best model is a model with the smallest value
of AIC, BIC, CAIC and HQIC. We can also perform formal goodness-of-fit
tests in order to verify which distribution fits better to these data. We apply
Kolmogorov-Smirnov (KS) and Anderson-Darling statistics, where small val-
ues of thesis statistics for a model indicate that this model could be chosen
as the best model to fit the data. The required numerical evaluations were
implemented using the R software through the package (stats4), command
mle with the L-BFGS-B method, and package (Adequacy Model), command
goodness.fit.

The data set consists of the number of successive failures for the air
conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes
(1963). The data set is:
194, 413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261,

51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37,

186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98,

54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386,

182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 16,

88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26,

35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46,

210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130,

90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71
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Table 2. MLEs, KS, AD, AICs, BICs, CAICs and HQICs for the real data set.

Dist. α̂ β̂ θ̂ γ̂ KS AD AIC BIC CAIC HQIC

EGL 5.148 0.348 1.425 8.509 0.044 0.2670 2074.1 2087.1 2074.4 2079.9
GL 1e-09 1 .0107 1.0626 0.082 1.925 2086.3 2096.0 2086.4 2090.2
L 1 1 0.0215 1 0.215 23.551 2167.3 2170.5 2167.3 2168.6

GG 0.8083 1.04765 0.00650 0 0.086 1.861 2083.1 2089.5 2083.1 2085.7
G 0.9048 1 0.00986 0 0.069 1.286 2079.2 2085.7 2079.3 2081.8
E 1 1 0.01089 0 0.084 2.032 2078.5 2081.7 2078.5 2079.8
W 1 0.91064 0.01699 0 0.057 0.947 2077.5 2084.0 2077.6 2080.1
PL 1 0.6609 0.1088 1 0.048 0.7149 2075.4 2078.6 2075.4 2076.7

Table 2 lists the MLEs of the parameters from the fitted models and the
values of the following statistics: KS, AD, AIC, BIC, CAIC and HQIC. For
Rayleigh distribution, corresponding p-values for the KS and AD statistics
are less than 0.05. Based on the values of these statistics, we conclude that
the EGL distribution and its sub-models can provide good fits for lifetime
data. The E distribution was slightly better based on the values of BIC,
HQIC, but the EGL model has the lowest values for the KS, AD, AIC CAIC
criteria among the fitted models, and therefore it could be chosen as the best
model for these real data.

The plots of the empirical and theoretical density and cumulative distri-
bution function and P-P plot for the EGL and GL distribution are given in
Figures 3. This figure shows again that the EGP distribution gives a good
fit for these data.

10 Conclusions
In this article, we introduced a new flexible extension of the generalized Lind-
ley distribution. We derived some important properties of the new distribu-
tion. Using a simulation study, some estimation methods for the parameters
of the distribution were compared. Then its application to model a real data
set was presented and discussed to demonstrate that this distribution can
be used quite effectively to provide better fit than other available subclass
models such as the generalized Lindley, power Lindley, Lindley, generalized
gamma, gamma, Weibull, exponential, Rayleigh and half-normal, and also
some other extensions of the Lindley distribution such as the weighted Lind-
ley and quasi Lindley models.
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Figure 3. Fitted plots for the EGL and GL distributions.
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