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1 Introduction

The logarithmic series (LS) distribution is one of the popular discrete distri-
butions. This distribution is a limiting case of the zero truncated negative
binomial distribution. The probability mass function (PMF) of the LS dis-
tribution is given by

f(x; p) =
−1

log(1− p)

px

x
, x ∈ {1, 2, 3, ...} . (1)

The LS distribution is used for modeling biological, behavioral and ecolog-
ical datasets, see Fisher et al. (1943), Gupta and Jain (1976) and Izsak
and Juhasz-Nagy (1982). Some of the researchers presented certain esti-
mators of the parameter of the LS distribution. For example: Patil (1962)
obtained ML and moment estimations of the parameter of the LS distribu-
tion. The minimum variance unbiased (UMVU) estimation of the parameter
is calculated by Patil and Bildikar (1966). Bohning (1983) presented two
numerical methods for obtaining the ML estimation of the parameter of the
LS distribution. Many researchers studied other aspects of this distribution,
for example: Gower (1961) presented some asymptotic properties of this
distribution, Ramalingam and Jagbir (1984) studied a characterization and
discussed the goodness of fit test for this distribution. Wani and Lo (1975)
obtained large sample interval estimation. Aghababaei Jazi and Alamatsaz
(2010) investigated ordering comparison of LS random variables based on
the mixtures.
Among all of the methods of parameter estimation, the maximum-likelihood
estimation method is the most frequently used since this method is simple,
intuitive and posses good properties such as asymptotically unbiasedness,
consistent, and asymptotically normally distributed. But, it is well known
that in finite samples this method does not include any desirable sampling
properties. blueIn particular, the MLE is often biased on small finite sample
size in specially for the LS distribution. Cox and Snell (1968) suggested a
method to obtain analytical expressions for the bias, with O(n−1), of the
maximum likelihood estimators. This method can be used for bias-correct of
the maximum likelihood estimators with O(n−2). Another approach is the
parametric Bootstrap resampling method suggested by Efron (1979). In this
method bias correction is obtained numerically without analytical expression
for the bias function. Some researchers used these methods for other distri-
butions for example: Lemonte et al. (2007), Giles (2012), Wang and Wang

© 2019, SRTC Iran



M. Rasekhi and G. G. Hamedani 61

(2017), Reath et al. (2018), Mazucheli et al. (2018) to name a few. blue One
of the motivations of this article is to obtain better estimators of p than MLE
in term of bias and standard error. Another motivation is to present some
novel characterizations of the LS distribution. In this article, based on the
above two approaches, we presented two bias corrected maximum likelihood
estimations for the parameter of LS distribution.
This article is organized as follows. Section 2 briefly discusses the maximum
likelihood estimation of the parameter of the LS distribution. An analytical
bias correction estimator for the parameter of this distribution is obtained in
Section 3. Section 4 includes the bias-correction mechanism based on Efron’s
bootstrap resampling. In Section 5, Monte Carlo simulations are used for
comparing the performance between two proposed methods with MLE. An
application to a real dataset is presented for illustrative purposes in Section
6. Certain characterizations of the LS distribution are provided in Section
7. Finally, Section 8 concludes the article.

2 Maximum Likelihood Estimation

Let x1, x2, ..., xn be observed values of a random sample of size n from the
LS distribution with parameter p. The log-likelihood function is

l(p) = −n log(− log(1− p)) + log(p)

n∑
i=1

xi −
n∑

i=1

log(xi). (2)

The maximum likelihood estimate of the p, p̂, can be obtained by solving the
nonlinear equation:

dl(p)

dp
=

n

(1− p) log(1− p)
+

n∑
i=1

xi

p
. (3)

To obtain an interval estimation of the parameter via the maximum likeli-
hood estimate p̂, we need the expected Fisher information, nE

(
− d2

dp2
log f(x; p)

)
,which is presented as follows:

K(p) =
−n (log(1− p) + 1)

((1− p) log(1− p))2
− n

p(1− p) log(1− p)
. (4)
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The inverse of the expected Fisher information is

K−1(p) =

(
−n (log(1− p) + 1)

((1− p) log(1− p))2
− n

p(1− p) log(1− p)

)−1

, (5)

and if (5) is evaluated at p̂, the estimate of the asymptotic variance of the
maximum likelihood estimate is provided. So, the asymptotic 100×(1−α)%
confidence interval for p is given by

p̂± z1−α
2

√
K−1(p̂),

where z1−α
2
is the 100 × (1 − α

2 )% percentile of the standard normal distri-
bution.

3 Closed form Bias-corrected Maximum Likeli-
hood Estimation

Cox and Snell (1968) proposed a method for deriving closed-form expressions
for the second order biases of MLE of the parameters. They illustrated
that when the sample data are independent, but not necessarily identically
distributed, the bias of the s-th element of the MLE of Θ, Θ̂,can be obtained
as:

Bias(Θ̂s) =

q∑
i=1

q∑
j=1

q∑
l=1

κsiκjl [0.5κijl + κij,l] +O(n−2), s = 1, 2, 3, ..., q,

(6)
where κij is the (i, j)th element of the inverse of the information matrix, K.
The joint cumulants of the derivatives of l(Θ) are

kij = E
(

d2

dΘidΘj
l(Θ)

)
, i, j = 1, 2, ..., q,

kijl = E
(

d3

dΘidΘjdΘl
l(Θ)

)
, i, j, l = 1, 2, ..., q,

kij,l = E
(

d2

dΘidΘj
l(Θ). d

dΘl
l(Θ)

)
, , i, j, l = 1, 2, ..., q.

Moreover, Cordeiro and Klein (1994) illustrated that equation (6) can be
rewritten as:
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Bias(Θ̂s) =

q∑
i=1

κsi
q∑

j=1

q∑
l=1

[
κ
(l)
ij − 1

2
κijl

]
+O(n−2), s = 1, 2, 3, ..., q, (7)

where κ(l)ij is dκij

dΘl
. Now by defining a(l)ij = κ

(l)
ij − 1

2κijl ∀i, j, l = 1, 2, 3, ..., q,
matrix A(l) =

[
a
(l)
ij

]
, ∀i, j, l = 1, 2, 3, ..., q and blockwise matrix A =[

A(1)
∣∣A(2)

∣∣· · · ∣∣A(q)
]
, we can obtain the bias of Θ̂ as

Bias(Θ̂) = K−1Avec(K−1) + O(n−2). (8)

Finally the bias corrected of Θ̂ is

Θ̂BC = Θ̂− K̂−1Â vec(K̂−1),

where K̂ and Â are the values of K and A by MLEs and vec (.) denotes the
“vectorization” operator.

Since the logarithmic series is considered in this article, we have q = 1 with
Θ = (p). The cumulants of the derivatives of the log-likelihood function of LS
distribution are provided below. The details on the mathematical derivations
are presented in the “Appendix”. The joint cumulants are

κ11 =
n(log(1−p)+1)

((1−p) log(1−p))2
+ n

p(1−p) log(1−p) ,

κ111 =
−n(1−p)(log(1−p))2+2n(1−p) log(1−p)(log(1−p)+1)2

((1−p) log(1−p))4
− 2n

p2(1−p) log(1−p)
.

(9)

The derivatives of the joint cumulants is

κ
(1)
11 = −n(1−p)(log(1−p))2+2n(1−p) log(1−p)(log(1−p)+1)2

((1−p) log(1−p))4

+n(p+2p log(1−p)−log(1−p))

(p(1−p) log(1−p))2
.

(10)

Using (9) and (10), we have
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A = a
(1)
11 = κ

(1)
11 − 1

2κ111

= −n(1−p)(log(1−p))2+2n(1−p) log(1−p)(log(1−p)+1)2

((1−p) log(1−p))4

+n(p+2p log(1−p)−log(1−p))

(p(1−p) log(1−p))2

−−n
2
(1−p)(log(1−p))2+n(1−p) log(1−p)(log(1−p)+1)2

((1−p) log(1−p))4

+ n
p2(1−p) log(1−p)

.

(11)

Thus, from (5) and (11), the bias of the MLE of the LS distribution is given
by

Bias(p) = K−1(p)Avec(K−1(p)) +O(n−2) =
A

K2(p)
+O(n−2).

Then, the bias-corrected MLE can be obtained as

p̂BC = p̂− Â

K̂2(p)
, (12)

where Â and K̂(p) are A and K(p) with p replaced by p̂.

4 Bootstrap form Bias-corrected Maximum Like-
lihood Estimation

In this section, the bootstrap resampling method (Efron, 1979) is used to
reduce the bias of the MLEs. First, by generating pseudo-samples from the
original sample, the biases of the MLEs are estimated. Then, the new bias-
corrected MLE is obtained by subtraction of the estimated biases from the
original MLEs.
Suppose x = (x1, x2, ..., xn) is a sample from the random variable X with the
distribution function F . Suppose η = t(F ) is a function of F similar to a
parameter and η̂ = s(x) is an estimator of η. Based on the Efron’s bootstrap
method, we select a large number of pseudo-samples x∗ = (x∗1, x

∗
2, ..., x

∗
n)

from x and campute the corresponding bootstrap replicates of η̂, say η̂∗ =
s(x∗). Then, an estimate of the distribution function of η̂ is the empirical
distribution of η̂. If F is a known parametric distribution, Fη, then an
estimate of F is obtained by using consistent estimator for Fη̂. The bias of
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η̂ = s(x) is
BF (η̂, η) = EF (s(X))− η̂(F ),

where the index F shows that the expectation is performed with respect to
the distribution F. The bootstrap bias estimate is calculated by replacing F ,
based on the original sample was obtained, by Fη̂. Hence, the bias can be
obtained as

BFη̂
(η̂, η) = EFη̂

(η̂)− η̂. (13)

Upon generating N independent bootstrap samples from the original sample
x, the bootstap estimates are (η̂∗(1), η̂∗(2), ..., η̂∗(N)). When N tends to larger
value, the expected value EFη̂

(η̂) is approximated by

η̂∗(.) =
1

N

N∑
i=1

η̂∗(i).

Thus, the bootstrap estimate of (13) is

BFη̂
(η̂, η) = η̂∗(.) − η̂,

and finally the second-order bias-corrected MLEs of the LS distribution is
obtained as

η̂BBC = 2η̂ − η̂∗(.). (14)

It is worth to mention that the estimator η̂BBC should be named the constant
bias-corrected MLE since the function is approximated by a constant (MacK-
innon and Smith, 1998). So, in this article, we let η̂ = p̂ and η̂BBC = p̂BBC .

5 Simulation Study

In this section, Monte Carlo simulations are used to compare the behav-
ior of the MLE of p and its proposed bias corrections based on the finite-
sample. The data were simulated via the rlogarithmic function in the ”ac-
tuar” R package created by Goulet (2018). Random samples are gener-
ated with the sample size n = 10, 20, 30 and real values of the parameter
are p = 0.05, 0.4, 0.5, 0.6, 0.7, 0.8, 0.95. For each combination of (n, p), the
Monte Carlo replications in our simulations is M = 3000. Also the boot-
strap replications are assumed B=4000. Since the MLE of p has bias with
both positive and negative sign, the comparison is performed via mean of
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the absolute empirical biases and root mean squared error criteria, i.e.

Bias(p̂esti ) =
1

M

M∑
i=1

∣∣p̂esti − p
∣∣ and RMSE(p̂esti ) =

√√√√ 1

M

M∑
i=1

(p̂esti − p)
2
,

where p̂est is an estimator of p. The MLE of p is calculated by ”optim”
function in R statistical program. The results are presented in Table 1.
From Table 1, the performance of BC−MLE is better than that of MLE and
BBC −MLE based on mean absolute bias and root mean squared error for
sample with small size. In most of the cases, the biases of all the estimators
of p decrease when sample size increases except for the value of p near zero
and one.

6 Illustrative Example
In this section, a real dataset is considered and the proposed methods in the
previous sections are illustrated. Best et al. (2008) presented three methods
of goodness of fit test for logarithmic series distribution. They used a dataset
on insect catches from the Sierra Tarahuma, Mexico, reported by Al-drete
(2002) and illustrated that the LS distribution is a good fit for this dataset
(Table 2). Table 3 shows the point estimates of p with standard errors of
MLE, BC-MLE and BBC-MLE. The standard errors of BC-MLE and BBC-
MLE are obtained by parametric bootstrap method with 2000 replications
and the same sample size (For example, this method is applied in section 5
of Rasekhi et al. (2017)). It is observed that BC-MLE provides the lowest
standard errors for the parameter p. It is worth to mention that, the BC-MLE
and BBC-MLE of p are bigger than the MLE. Thus the MLE underestimate
the parameter p of the LS distribution.

7 Characterizations Results
The problem of characterizing a distribution is an important problem in
applied sciences, where an investigator is vitally interested to know if their
model follows the right distribution. To this end, the investigator relies
on conditions under which their model would follow specifically the chosen
distribution. In this section, we present two characterizations of the LS
distribution based on: (i) conditional expectation of certain function of the
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Table 1. Estimated mean absolute bias (root mean-squared error) for estimators of p
Estimators of p

p n MLE BC-MLE BBC-MLE
0.05 10 0.2913(0.3788) 0.2586(0.3453) 0.2689(0.3664)

20 0.2667(0.3446) 0.2503(0.3284) 0.2542(0.3399)
30 0.3475(0.4189) 0.3348(0.4063) 0.3412(0.4165)

0.4 10 0.2325(0.2495) 0.2164(0.2337) 0.2155(0.2546)
20 0.2062(0.2298) 0.2017(0.2236) 0.2112(0.2400)
30 0.2155(0.2339) 0.2152(0.2297) 0.2221(0.2423)

0.5 10 0.2391(0.2665) 0.2317(0.2612) 0.2541(0.2145)
20 0.2145(0.2404) 0.2072(0.2350) 0.2222(0.2124)
30 0.1894(0.2145) 0.1865(0.2516) 0.1939(0.2214)

0.6 10 0.3682(0.3972) 0.3481(0.3787) 0.3701(0.4008)
20 0.3005(0.3426) 0.2918(0.3342) 0.3016(0.3468)
30 0.2920(0.3358) 0.2859(0.3300) 0.2926(0.3392)

0.7 10 0.3972(0.4438) 0.3778(0.4239) 0.3969(0.4429)
20 0.4546(0.4963) 0.4433(0.4867) 0.4588(0.5043)
30 0.3085(0.3602) 0.2981(0.3516) 0.3032(0.3593)

0.8 10 0.5268(0.5662) 0.5026(0.5447) 0.5242(0.5672)
20 0.4782(0.5268) 0.4628(0.5146) 0.4753(0.5298)
30 0.2724(0.3500) 0.2695(0.3456) 0.2728(0.3516)

0.95 10 0.5621(0.6308) 0.5326(0.6055) 0.5529(0.6263)
20 0.4976(0.5909) 0.4842(0.5788) 0.4932(0.5902)
30 0.6109(0.6619) 0.6003(0.6530) 0.6077(0.6620)

Table 2. Insect dataset.
Times caught 1 2 3 4 5 6 8 10 11 12 13 16 25 69 95
Frequency 10 3 4 2 2 2 1 1 1 1 1 1 2 1 1

Table 3. MLE and bias-corrected MLEs (standard error).
Estimators Estimate of p (SE)
MLE 0.9743(0.0098)
BC-MLE 0.9777(0.0088)
BBC-MLE 0.9795(0.0096)
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random variable ; (ii) the hazard rate function.
The cumulative distribution function (CDF), F (x; p), corresponding PMF,
f (x; p) and hazard rate function, hF (x; p) can be expressed, respectively, as

F (x; p) = 1− CB (p;x+ 1, 0) , x = 1, ..., (15)

f (x; p) = C {B (p;x, 0)−B (p;x+ 1, 0)} , x = 1, ..., (16)

hF (x) =
B (p;x, 0)

B (p;x+ 1, 0)
− 1, x = 1, ..., (17)

where p ∈ (0, 1) is a parameter, C = − 1
log(1−p) and

B(ξ, a, b) =
∫ ξ
0 u

a−1(1− u)b−1du.We present our characterizations (i) and
(ii) via two subsections 7.1 and 7.2.

7.1 Characterizations of LS in terms of the conditional ex-
pectation of certain function of the random variable

Proposition 1. Let X : Ω → N be a random variable. The PMF of X is
(16) if and only if

E {[B (p;X, 0) +B (p;X + 1, 0)] | X > k} = B (p; k + 1, 0) . (18)

Proof. If X has PMF (16), then the left-hand side of (18) will be

(1− F (k; p))−1
∞∑

x=k+1

C
{
[B (p;x, 0)]2 − [B (p;x+ 1, 0)]

}
=

C

CB (p; k + 1, 0)

{
[B (p; k + 1, 0)]2 − 0

}
= B (p; k + 1, 0) .

Conversely, if (18) holds, then
∞∑

x=k+1

{[B(p;x, 0) +B(p;x+ 1, 0)] f(x; p)}

= (1− F (k; p))B(p; k + 1, 0)

= [(1− F (k + 1; p)) + f(k + 1)]B(p; k + 1, 0).

(19)
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From (18), we also have
∞∑

x=k+2

{[B(p;x, 0) +B(p;x+ 1, 0)] f(x; p)}

= (1− F (k + 1; p))B(p; k + 2, 0).

(20)

Now, subtracting (20) from (19), we arrive at

(1−F (k + 1; p)) [B (p; k + 1, 0)−B (p; k + 2, 0)] = f (k + 1)B (p; k + 2, 0) .

From the last equality, we have

hF (k + 1) =
f (k + 1)

1− F (k + 1)
=
B (p; k + 1, 0)

B (p; k + 2, 0)
− 1,

which, in view of (17), implies that X has PMF (16).

7.2 Characterization of LS based on hazard function

Proposition 2. Let X : Ω → N be a random variable. The PMF of X is
(16) if and only if its hazard rate function satisfies the difference equation

hF (k + 1)− hF (k) =
B (p; k + 1, 0)

B (p; k + 2, 0)
− B (p; k, 0)

B (p; k + 1, 0)
, k ∈ N, (21)

with the initial condition hF (1) = B(p,1,0)
B(p,2,0) − 1 .

Proof. If X has PMF (16), then clearly (21) holds. Now, if (21) holds, then
for every x ∈ N, we have

x−1∑
k=1

{hF (k + 1)− hF (k)}

=

x−1∑
k=1

{
B (p; k + 1, 0)

B (p; k + 2, 0)
− B (p; k, 0)

B (p; k + 1, 0)

}
,

or
hF (x)− hF (1) =

B (p;x, 0)

B (p;x+ 1, 0)
− B (p; 1, 0)

B (p; 2, 0)
.
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In view of the fact that hF (1) = B(p;1,0)
B(p;2,0) − 1, from the last equation we have

hF (x) =
B (p;x, 0)

B (p;x+ 1, 0)
− 1,

which, in view of (17), implies that X has PMF (16).

8 Conclusions
The second-order bias-corrected MLE of the logarithmic series distribution
based on Cox and Snell (1968) corrective approach is presented and this
estimator is called BC-MLE. This estimator has explicit expressions (assum-
ing MLE is known) and also reduces the bias and the root mean square
error (RMSE) of the parameter of the LS distribution. For a comparison
study, Efron’s bootstrap resampling method is used to obtain another bias-
corrected MLE called BBC-MLE. The results of simulation studies and real
data application strongly suggest that the BC-MLE is the best choice when
the sample size is small. Also, certain characterizations of the LS distribution
based on conditional expectation of certain function of the random variable
and hazard function are presented.
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Appendix
The derivatives of the log-likelihood function (2) up to three order with
respect to parameter p are presented as follows:

dl(p)
dp = n

(1−p) log(1−p) +

n∑
i=1

xi

p ,

d2l(p)
dp2

= n{− log(1−p)+1}
((1−p) log(1−p))2

−

n∑
i=1

xi

p2
,

d3l(p)
dp3

= −n(1−p){log(1−p)}2+2(1−p) log(1−p){log(1−p)+1}
((1−p) log(1−p))4

+
2

n∑
i=1

xi

p3
.

The expectation of X

E(X) =
−p

(1− p) log(1− p)
,

is needed for finding the cumulants.
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