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random variable with an absolutely continuous cumulative distribution func-
tion (cdf) F , probability density function (pdf) f and the survival function
(sf) F̄ (x) = 1− F (x). Shannon entropy of X is defined as

H(X) = −E(log f(X)) = −
∫ +∞

0
f(x) log f(x)dx,

in which, “ log ” means the natural logarithm. Recently, Lad et al. (2015)
proposed an alternative measure of uncertainty of a random variable called
extropy. The term extropy, as an antonym to entropy, had been used earlier
in academic literature as well. Extropy is the extent of a living or organiza-
tional system’s intelligence, functional order, vitality, energy, life, experience,
and capacity and drives for improvement and growth. It is not a rigorously
defined technical term in the philosophy of science. In a metaphorical sense,
extropy can simply express the opposite of entropy. Lad et al. (2015) defined
the extropy of non-negative random variable X as

J(X) = −1

2

∫ +∞

0
f2(x)dx

= −1

2

∫ 1

0
f
(
F−1(u)

)
du. (1)

The properties of this measure such as the maximum extropy distribution
and statistical applications were presented in their work. Yang et al. (2018)
studied the relations between extropy and variational distance. They de-
termined the distribution which attains the minimum or maximum extropy
among these distributions within a given variation distance from any given
probability distribution. Also, Qiu et al. (2019) explored an expression of
the extropy of a mixed system’s lifetime. Jahanshahi et al. (2019) introduced
an alternative measure of uncertainty of the random variable X which they
called it cumulative residual extropy (CRJ) as

CRJ(X) = −1

2

∫ +∞

0
F̄ 2(x)dx. (2)

Moreover, they studied some properties of the aforementioned information
measure. Qiu and Jia (2018) proposed residual extropy to measure residual
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uncertainty of the random variable X as follows

Jt(X) = −1

2

∫ +∞

t
f2t (x)dx, (3)

where ft(x) = f(x)/F̄ (t), x > t. The Jt(X) is suitable to measure infor-
mation when uncertainty is related to the future. For more recent works on
extropy, one can also refer to Alizadeh and Jarrahiferiz (2019), Noughabi
and Jarrahiferiz (2020), Qiu and Jia (2018), Jose and Sathar (2019), Qiu
(2017), and Krishnan et al. (2020) and the references therein.

In this paper, we introduce a new measure of uncertainty that will be
called dynamic survival past extropy (DSPJ). We consider the concept DSPJ
which relates to the uncertainty on the past lifetime of a system. The dy-
namic survival past extropy for the past lifetime of the random variable X
is defined as

DSPJF (t) = −1

2

∫ t

0
F̄ 2
t (x)dx, (4)

where F̄t(x) = F (x)
F (t) , x < t. For the special case t = ∞, we define the

cumulative extropy (CJ) of random variable X as

CJF = −1

2

∫ +∞

0
F 2(x)dx. (5)

The goal of this paper is to enquire about some new form of survival and
past extropy functions using the underlying distribution function and quan-
tile function procedures. The quantile version of various entropies was pre-
sented with the purposes of providing alternative ways, new results and dif-
ferent methods of stochastic comparisons. For details we refer to Sunoj and
Sankaran (2012), Yu and Wang (2013), Nanda et al. (2014), Sunoj et al.
(2017) and Qiu (2019). The quantile function strategy allows us to discover
some results which are hard to obtain using the definition of survival and
past extropies in the form of the underlying distribution function.

The structure of the paper is as follows. In Section 2, some relevant defini-
tions are presented. Moreover, the features of dynamic survival past extropy
and its relation with reversed hazard rate function are evaluated in Section 3.
The quantile-based approach for the dynamic survival past extropy is studied
in Section 4 in details and further some stochastic comparisons are investi-

J. Statist. Res. Iran 16 (2019): 229–244



232 On Dynamic Survival Past Extropy Properties

gated in this section. Additionally, the cumulative extropy as the special
case of the dynamic survival past extropy is studied. Finally, the behaviour
of the dynamic survival past extropy of some order statistics is evaluated
and some results are established.

2 Some Definitions
This section devoted to the review of some definitions about the stochastic
orders and quantile function. More details of stochastic orders can be found
in Shaked and Shanthikumar (2007).

Definition 1. Let the cdf of random variable X is F (x), then the quantile
function corresponding to cdf F (x) is defined by

Q(u) = inf{x|F (x) ≥ u}, 0 ≤ u ≤ 1,

and q(u) = dQ(u)
du is the quantile density function. Also, the reversed hazard

quantile function of the random variable X is λQ(u) = 1
uq(u) .

Definition 2. Let X and Y be two random variables with cdfs F and G and
pdfs f and g, respectively. Assume the ratios below are well defined. Then
X is said to be smaller than Y in the sense of:
(i) usual stochastic order (denoted by X ≤st Y or F ≤st G) if F̄ (x) ≤ Ḡ(x)
for all x;

(ii) hazard rate order (denoted by X ≤hr Y or F ≤hr G) if
Ḡ(x)

F̄ (x)
is increasing

in x;
(iii) reversed hazard quantile order (denoted by X ≤RHQ Y or F ≤RHQ G)
if λQX

(u) ≤ λQY
(u) for all u ∈ (0, 1);

(iv) dynamic survival past quantile extropy (denoted by X ≤DSPQJ Y ) if
DSPJQX

(u) ≤ DSPJQY
(u) for all 0 ≤ u ≤ 1;

(v) dynamic survival past extropy (denoted by X ≤DSPJ Y ) if DSPJF (t) ≤
DSPJG(t) for all 0 ≤ t ≤ 1.

3 Dynamic Survival Past Extropy
In a real life situation, one may be interested in getting uncertainty about
the history of the system. It is logical to assume that in some realistic
circumstances, the uncertainty is not unavoidably related to the future, but
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somehow it can be pointed to the past as well. For instance, a system which is
observed only at certain pre-assigned inspection times is found to be down,
then the uncertainty of the system life relies on the past, i .e., on which
instant it has actually failed. For a non-negative random variable X with
an absolutely continuous cdf F , we define the dynamic survival past extropy
(DSPJ) as

DSPJF (t) = −1

2

∫ t

0

(F (x)
F (t)

)2
dx

= − 1

2F 2(t)

∫ F (t)

0

u2

f
(
F−1(u)

)du. (6)

In the following, the relationship between the dynamic survival past extropy
and the reversed hazard rate is presented.

Theorem 1. Let DSPJF (t) and λ(t) be the dynamic survival past extropy and
reversed hazard rate of non-negative random variable X with an absolutely
continuous cdf F , respectively. Then, we have

λ(t) =
2DSPJ′F (t) + 1

−4DSPJF (t)
. (7)

Proof. It is quite apparent from Equation (6) that

dDSPJF (t)

dt
=

−1

2

[
1− 2

∫ t

0
F 2(x)F−3(t)f(t)dt

]
=

−1

2
− 2DSPJF (t)λ(t), (8)

where λ(t) = f(t)
F (t) . Therefore, the proof is complete.

Theorem 2. The relationship DSPJF (t) = − K
λ(t) where K is a non-negative

constant holds for all t > 0 if and only if F be
(i) uniform distribution F (x) = x−a

b−a , a ≤ x ≤ b if K = 1
6 .

(ii) power I distribution F (x) = ( xα)
β, 0 ≤ x ≤ α, β ≥ 0 if K = β

2(2β+1) ,
0 < K < 1.
(iii) power II distribution F (x) = (x+1

b+1 )
c, −1 ≤ x ≤ b, c ≥ 0 if K = c

2(2c+1) ,
0 < K < 1.
(iv) type III extreme value F (x) = ec(x−b), −∞ < x ≤ b, c > 0 if K = 1

4 .
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Table 1. DSPJF (t) for some distributions.
Distribution F (x) λ(t) DSPJF (t)

Uniform x−a
b−a

, a ≤ x ≤ b 1
t−a

− t−a
6

Power I ( x
α
)β , 0 ≤ x ≤ α, β ≥ 0 β

t
− t

2(2β+1)

Power II ( x+1
b+1

)c, − 1 ≤ x ≤ b, c ≥ 0 c
t+1

− t+1
2(2c+1)

Exponential 1 − e−λx, x ≥ 0, λ ≥ 0 λe−λt

1−e−λt −
t+4e−λt−e−2λt−3

2λ
2(1−e−λt)2

Type III extreme value ec(x−b), − ∞ < x ≤ b, c > 0 c −1
4c

Rescaled beta distribution 1 − (1 − x
R

)c, 0 ≤ x ≤ R
c
R

(1− t
R

)c−1

1−(1− t
R

)c
−

t+2c
R

(1− t
R

)c−1(1−(1− t
R

)c)

2(1−(1− t
R

)c)2

Figure 1. Plot of cumulative past extropy for the distributions in Table (1).

Proof. The result follows immediately from Table 1.

For the distributions in Table 1, the dynamic survival past extropy func-
tions have been depicted in Figure 1. Assume that the location, scale and
shape parameters in the aforementioned distributions have values 1, 2 and
3, respectively.

Theorem 3. Let X be the random variable with support [−1, b]. Then
the relation DSPJF (t) = − K

λ(t) where K > 1
4 is a constant, holds for all

t ∈ (−1, b], if and only if X follows Power II distribution as

F (x) = (
x+ 1

b+ 1
)c, − 1 ≤ x ≤ b, c ≥ 0. (9)

Proof. The necessary part follows from Table 1, where K = c
2(2c+1) . From

relation (7), we have λ′(t)
λ2(t)

= 4K−1
2K . By doing some calculation we obtain
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λ(t) = 1
4K−1
2K

t+d
with d > 0 and therefore we get

F (x) = e−
∫ b
x λ(t)dt =

(x+ 2dK
4K−1

b+ 2dK
4K−1

) 2K
4K−1

. (10)

By placing K = 1
4−2d and d = 4K−1

2K , Equation (10) results in Equation
(9).

It should be mentioned that, for t = ∞, we have DSPJF (∞) = CJF . Let
X is a non-negative random variable with an absolutely continuous cdf F .
We define the CJ as

CJF = −1

2

∫ +∞

0
F 2(x)dx

= −1

2

∫ 1

0

u2

f
(
F−1(u)

)du. (11)

Corollary 1. For random variable X with CJF , we have

CJF = −1

2

[∫ ∞

0
F (x)dx− Et

(
HF (t)

)]
, (12)

where Et

(
HF (t)

)
=
∫ +∞
0 f(t)

∫ t
0 F (x)dxdt and HF (t) =

∫ t
0 F (x)dx.

Proof. From Equation (11), we obtain

CJF = −1

2

∫ +∞

0
F 2(x)dx

= −1

2

∫ +∞

0
F (x)

(∫ x

0
f(t)dt

)
dx

= −1

2

∫ +∞

0
f(t)

(∫ ∞

0
F (x)dx−

∫ t

0
F (x)dx

)
dt. (13)

Therefore, from Equation (13) the proof is completed.

The mean past lifetime (MPL) of random variable X at time t, which
we denote by MF (t), is defined as MF (t) =

∫ t
0 F (x)dx

F (t) . Using the relation
MF (t) =

HF (t)
F (t) , we can obtain another alternative expression of the CJ, that
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is expressed in terms of MPL as

CJF = −1

2

[∫ ∞

0
F (x)dx− Et

(
F (t)MF (t)

)]
. (14)

It should be noted that if the expected value of X exists, then the cumulative
Extropy is −∞ and this demonstrates the necessity to study the quantile-
based dynamic survival past extropy approach.

4 Dynamic Survival Past Quantile Extropy

In the field of quantile functions, we can present the the dynamic survival
past quantile extropy as follows

DSPJQ(u) = − 1

2u2

∫ u

0
p2q(p)dp. (15)

By differentiating from Equation (15), we obtain

q(u) = −2DSPJ ′
Q(u)−

4

u
DSPJQ(u). (16)

Equation (16) shows that the baseline distribution is characterized byDSPJQ(u)
and it can be used to make the new quantile functions based on the func-
tional forms of DSPJQ(u). Also, DSPJQ(u) specifies the reversed hazard
rate as follows

λQ(u) =
1

−2uDSPJ ′
Q(u)− 4DSPJQ(u)

. (17)

Example 8. Consider the linear mean residual quantile function family of
distribution (Midhu et al. (2013)) is identified by

Q(u) = −(c+ µ) log(1− u)− 2cu, µ > 0, − µ ≤ c < µ, 0 ≤ u ≤ 1. (18)

which includes the exponential and uniform distributions and approximates
several continuous distributions closely. In the present case, the cumulative
past quantile extropy is

DSPJQ(u) =
c+ µ

2

(1
2
+

1

u
+

1

u2
log(1− u)

)
+
cu

2
. (19)
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It should be mentioned that the reversed hazard rate of the aforementioned
quantile function is

λQ(u) =

(
(c+ µ)u

1− u
− 2cu

)−1

. (20)

Corollary 2. Let X be an absolutely continuous non-negative random vari-
able. Then DSPJQ(u) is the linear of the form DSPJQ(u) = A+Bu, A < 0
and B < 0 if and only if λQ(u) is the inverse linear function.

Proof. From Equation (17), we have

λQ(u) =
1

−6Bu− 4A
=

1

a+ bu
, a = −4A, b = −6B, (21)

which is a hazard quantile function when A < 0 and B < 0. On the contrary,
Assume that λQ(u) = 1

a+bu , a > 0 and b > 0, therefore from Equation (17)
we have

a+ bu = −2uDSPJ ′
Q(u)− 4DSPJQ(u). (22)

By integrating factor u2 from Equation (17), we conclude that

DSPJQ(u) = −a
4
− b

6
u+

c

u2
. (23)

It satisfies the Equation (22) when c = 0.

Distributions with inverse linear reversed hazard quantile function in-
clude the uniform, power I and power II distributions. Thus, Result 2 pro-
vides a characterization of the inverse linear reversed hazard quantile func-
tion family in terms of linear dynamic survival past extropy function.
In the following, by using the Equation (17), some ageing properties of ran-
dom variable X have been obtained. By differentiating Equation (17), we
obtain

λ′Q(u) =
6DSPJ ′

Q(u) + 2uDSPJ ′′
Q(u)(

2uDSPJ ′
Q(u) + 4DSPJQ(u)

)2 . (24)

Accordingly, the random variable X is IFR if DSPJQ(u) is increasing and
concave, while the random variable X is DFR when DSPJQ(u) is decreasing
and convex. Hereafter, some stochastic comparisons between two random
variablesX and Y with dynamic survival past extropy functionsDSPJQX

(u)
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and DSPJQY
(u), respectively have been assessed.

Corollary 3. If X ≤RHQ Y then X ≤DSPQJ Y .

Proof. If X ≤RHQ Y , we conclude that 1
pqX(p) ≤ 1

pqY (p) for all 0 ≤ p ≤ 1.
Therefore we have

∫ u
0 p

2qX(p)dp ≤
∫ u
0 p

2qY (p)dp and from Equation (15) the
proof is completed.

This theorem concludes that whenever X ≤RHQ Y , the system with
lifetime X is less reliable than that with lifetime Y which also indicates that
the information contained in the cumulative past lifetime distribution of X
is smaller than Y . The inverse of the Result 3 might not be true. Therefore,
the circumstances that the inverse of the aforementioned theorem is valid,
has been presented in the next theorem.

Corollary 4. Let DSPJQX
(u)

DSPJQY
(u) be the strictly increasing function in u. If

X ≤DSPQJ Y then X ≤RHQ Y .

Proof. With respect to DSPJQX
(u)

DSPJQY
(u) is the increasing function in u, we have

u2qX(u)
∫ u
0 p

2qX(p)dp− u2qY (u)
∫ u
0 p

2qY (p)dp( ∫ u
0 p

2qY (p)dp
)2 ≥ 0.

From the previous inequality, we conclude that qX(u)
qY (p) ≥

∫ u
0 p2qX(p)dp∫ u
0 p2qY (p)dp

≥ 1 and
the proof is completed.

Example 9. Assume that QX(u) = u2 and QY (u) = u. From Equation
(15), we have DSPJQX

(u) = −u
3 and DSPJQY

(u) = −u
6 . It is obvious that

X ≤CPQJ Y . From Figure 2, it is clear that X and Y are not in reversed
hazard quantile order. Moreover, DSPJQX

(u)

DSPJQY
(u) = 2 is constant function and so

the condition given in Corollary 4 cannot be satisfied.

In the following, the relation between two orderings ≤DSPJ and ≤DSPQJ

is investigated and in the next examples, we show that the stochastic order
≤DSPJ (≤DSPQJ) does not imply ≤DSPQJ (≤DSPJ).

Example 10. Assume that F (x) = x, 0 ≤ x ≤ 1 and G(y) = y2, 0 ≤ y ≤
1. From Equation (6), we have DSPJF (t) = − t

6 and DSPJG(t) = − t
10

therefore X ≤DSPJ Y . Moreover, let QX(u) = u and QY (u) = u
1
2 then from
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Figure 2. Plot of the reversed hazard quantile function.

Equation (15), we obtainDSPJQX
(u) = −u

6 andDSPJQY
(u) = −u

1
2

10 . Here,
DSPJQX

(u) and DSPJQY
(u) cross each other at u = 0.36. Accordingly,

ordering ≤DSPQJ does not exist between random variables X and Y .

Example 11. Let F (x; c,R) = 1− (1− x
R)

c, 0 ≤ x ≤ R. From Table 1, we
have

DSPJF (t; c,R) = −
t+ 2c

R (1− t
R)

c−1(1− (1− t
R)

c)

2(1− (1− t
R)

c)2
.

Left panel of Figure 3 shows that DSPJF (t; 1, 2) and DSPJF (t; 2, 2) are not
ordered by ≤DSPJ . Moreover, QX(u) = R(1− (1− u)

1
c ) gives

DSPJQX
(u; c,R) = − R

2cu2

[
c− 1− c(1− u)

1
c +

c

c+ 1
(1− u)

1
c
+1
]
.

From the right panel of Figure 3, we observe thatDSPJQX
(u; 1, 2) ≥ DSPJQX

(u; 2, 2).

Whereas ≤DSPJ and ≤DSPQJ are not jointly inferred but they can make
so under specific circumstances.

Corollary 5. Let DSPJG(t) is an increasing function in t and X ≤hr Y or
X ≤rhr Y . If X ≤DSPJ Y then X ≤DSPQJ Y .

Proof. SinceX ≤DSPJ Y we conclude thatDSPJF (QX(u)) ≤ DSPJG(QX(u)).
From X ≤hr Y we have QX(u) ≤ QY (u). As regards DSPJG(t) is an in-
creasing function, we obtain DSPJG(QX(u)) ≤ DSPJG(QY (u)) and the
proof is complete.
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Figure 3. Plot ofDSPJF (t; 1, 2), DSPJF (t; 2, 2), DSPJQX (u; 1, 2) andDSPJQX (u; 2, 2)
in Example 11.

5 Dynamic Survival Past Extropy of Parallel and
Series Systems

Consider a parallel (series) system with independent and identical compo-
nents with lifetimes X1, · · · , Xn with common cdf F . Let Xn:n and X1:n

be the smallest and largest order statistics from the random variables Xi,
i = 1, ..., n. The lifetime of parallel (series) system is Xn:n (X1:n) ; See
Barlow and Proschan (1981). The dynamic survival past extropy of parallel
system denoted by DSPJFn:n(t) and is given by

DSPJFn:n(t) = −1

2

∫ t

0

(
F (x)

F (t)

)2n

dx

= − 1

2F (t)2n

∫ ∞

0
(F (x))2n dx+

1

2

∫ ∞

t

(
F (x)

F (t)

)2n

dx

=
1

F (t)2n
CJFn:n(t) +

1

2

∫ ∞

t

(
F (x)

F (t)

)2n

dx, (25)

where CJFn:n(t) indicates the cumulative extropy of parallel system.

Remark 1. For t = ∞, DSPJFn:n(t) = CJFn:n(t).

In sequel, we provide a lower bound for the DSPJFn:n(t).

Corollary 6. For all t, CJ(Fn:n)
F 2n(t)

≤ DSPJFn:n(t).

Proof. In Equation (25), it is clear that
∫∞
t

(
F (x)
F (t)

)2n
dx ≥ 0 and the proof

is complete.
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Remark 2. Let CJF1:n(t) is the dynamic survival past extropy of series
system, then we have
(i) CJFn:n(t) ⩾ n2CJF (t).
(ii) CJF1:n(t) ⩾ n2CJF (t).
(iii) CJF1:n(t) ⩾ − cn2

2 , where c =
∫∞
0 F (x)dx.

Proof. The inequalities in part (i) and (ii) come directly from Fn(x) ≤
nF (x).

Corollary 7. DSPJFn:n(t)
(
DSPJF1:n(t)

)
is increasing (decreasing) function

in n.
Let the sf of the random variable t−Xn:n|Xn:n < t denoted by F̄n:n,t. It

is obvious that
F̄n+1:n+1,t

F̄n:n,t
=
F (x)

F (t)
, (26)

is less than one for x ∈ (0, t) and so we have(
t−Xn+1:n+1|Xn+1:n+1 < t

)
≤st

(
t−Xn:n|Xn:n < t

)
.

Moreover, we have DSPJFn:n(t) = −1
2

∫ t
0

(
F̄n:n,t(x)

)2
dx, therefore the proof

is completed. For DSPJF1:n(t), the proof is obtained in a similar way. □
Example 12. Let the identical random variables X1, · · · , Xn delineated
via exponential distribution with mean 1/λ. In Figure 3, for t = 2 and
λ = 0.2 the dynamic survival past extropy of Xn:n and X1:n is depicted
for n = 1, . . . , 10 in left and right panel, respectively. Figure 3 shows that
DSPJFn:n(2) (DSPJF1:n(2)) is increasing (decreasing) in n = 1, . . . , 10 and
confirms Result 3.
Proposition 1. Let X and Y be two positive random variables with pdfs
g(x) and h(x) and absolutely continuous cdfs G(x) and H(x), respectively.
Then G and H belong to the same family of distributions, but for a change
in location and scale, if and only if for t > 0, DSPJFn:n = DSPJGn:n , for
n = nj , j ≥ 1 such that

∑+∞
j=1

1
nj

is infinite.

Proof. First assume that DSPJFn:n = DSPJGn:n . Then, Equation (25) im-
plies that ∫ 1

0
u2n

(
F (t)

f(F−1(uF (t)))
− G(t)

g(G−1(uG(t)))

)
du = 0, (27)
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Figure 4. Plot of dynamic survival past extropy of Xn:n and X1:n for n = 1, . . . , 10 in left
and right panel, respectively.

holds for j ≥ 1, n = nj , such that
∑+∞

j=1
1
nj

= ∞. By Muntz-Szasz Theorem,
we conclude that f(F−1(uF (t))) = g(G−1(uG(t))), for u ∈ (0, 1). On the
other hand, since dF−1(uF (t))/dv = (f(F−1(t)))−1, we have dF−1(uF (t))/dv =
dG−1(uG(t))/dv, t ∈ (0, 1). It then follows that F−1(uF (t)) = G−1(uG(t))+
k, u ∈ (0, 1), i.e. F−1(u′) = G−1(u′) + k, u′ ∈ (0, 1). This means that F and
G belong to the same family of distributions, but for a possible change in
location. The necessity is trivial.

6 Conclusion
In this paper, we investigate the dynamic survival past extropy and the cu-
mulative extropy as the measure of uncertainty. The information properties
of these extropies have been studied in details. Some stochastic comparisons
and bounds are obtained and for parallel and series systems the performance
of the aforementioned informations are assessed. Also, the quantile-based
dynamic survival past extropy approach is considered.
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