1. Asgharzadeh, A. (2006). Point and Interval Estimation for a Generalized Logistic Distribution under Progressive TypeII Censoring. Communications in StatisticsTheory and Methods., 35, 16851702. [ DOI:10.1080/03610920600683713] 2. Asgharzadeh, A., Kazemi, M. and Kundu, D. (2017). Estimation of P(X>Y) for Weibull Distribution based on Hybrid Censored Samples. International Journal of System Assurance Engineering and Management., 8, 489498. DOI: 10.1007/s1319801503902. [ DOI:10.1007/s1319801503902] 3. Asgharzadeh, A., Valiollahi, R. and Kundu, D. (2015). Prediction for Future Failures in Weibull Distribution under Hybrid Censoring. Journal of Statistical Computation and Simulation, 85, 824838. [ DOI:10.1080/00949655.2013.848451] 4. Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications; Boston: Birkhauser. [ DOI:10.1007/9781461213345] 5. Balakrishnan, N. and Hossain, A. (2007). Inference for the TypeII Generalized Logistic Distribution under Progressive TypeII Censoring. Journal of Statistical Computation and Simulation.; 77, 10131031. [ DOI:10.1080/10629360600879876] 6. Balakrishnan, N. and Kannan, N. (2000). Point and Interval Estimation for the Parameters of the Logistic Distribution based on Progressively TypeII Censored Samples. In Handbook of StatisticsVol. 20, (Eds., N. Balakrishnan and C. R. Rao), 456431. 7. Balakrishnan, N. and Leung, M.Y. (1988). Order Statistics from the TypeI Generalized Logistic Distribution. Communications in StatisticsSimulation and Computatio, 17, 2550. [ DOI:10.1080/03610918808812648] 8. Balakrishnan, N. and Sandhu, R.A. (1995). A Simple Simulational Algorithm for Generating Progressive TypeII Censored Samples. Amer. Statist., 49, 229230. 9. Bayat Mokhtari, E., Habibi Rad, A. and Yousefzadeh, F. (2011). Inference for Weibull Distribution based on Progressively TypeII Hybrid Censored Data. Journal of Statistical Planning and Inference, 141, 28242838. [ DOI:10.1016/j.jspi.2011.03.007] 10. Chen, S. and Bhattachacharya, G.K. (1988). Exact Confidence Bounds for an Exponential Parameter under Hybrid Censoring. Communications in StatisticsTheory and Methods, 17, 18701857. [ DOI:10.1080/03610928808829718] 11. Draper, N. and Guttman, I. (1987). Bayesian Analysis of Hybrid Life Tests with Exponential Failure Times. Annals of the Institute of Statistical Mathematics, 39, 219225. [ DOI:10.1007/BF02491461] 12. Ferguson, T.S. (1996). A Course in Large Sample Theory; London: Chapman and Hall. [ DOI:10.1007/9781489945495] 13. Efron, B. (1982). The Jacknife, the Bootstrap and Other Resampling Plans; CBMSNSF Regional Confrence Series in Applied Mathematics, 38, SIAM, Philadelphia, PA. 14. Efron, B. (1979). Bootstrap Methods, Another Look at the Jackknife. The Annals of Statistics, 7, 126. [ DOI:10.1214/aos/1176344552] 15. Epstein, B. (1954). Truncated Life Tests in the Exponentioal Case. Annals os Statistics, 25, 555564. [ DOI:10.1214/aoms/1177728723] 16. Fairbanks, K., Madson, R. and Dykstra, R. (1982). A Confidence Interval for an Exponential Parameter from a Hybrid Life Test. Journalof the American Statistical Association, 77, 137140. [ DOI:10.1080/01621459.1982.10477776] 17. Gurunlu Alma, O. and Arabi Belaghi, R. (2016). On the Estimation of the Extreme Value and Normal Distribution Parameters based on Progressive TypeII Hybridcensored Data. Journal of Statistical Computation and Simulation, 86, 569596. [ DOI:10.1080/00949655.2015.1025785] 18. Gupta, R.D. and Kundu, D. (1998). Hybrid Censoring Schemes with Exponential Failure Distribution. Communications in StatisticsTheory and Methods, 27, 30653083. [ DOI:10.1080/03610929808832273] 19. Hemmati, F. and Khorram, E. (2013). Statistical Analysis of the Lognormal Distribution under TypeII Progressive Hybrid Censoring Schemes. Communications in StatisticsTheory and Methods, 42, 52–75. [ DOI:10.1080/03610918.2011.633195] 20. Joarder, A., Krishna, H. and Kundu, D. (2009). On TypeII Progressively Hybrid Censoring. Journal of Modern Applied Statistical Methods, 8(2), 534546. [ DOI:10.22237/jmasm/1257034620] 21. Kayal, T., Tripathi, Y.M., Rastogi, M.K. and Asgharzadeh, A. (2017). Inference for Burr XII Distribution under TypeI Progressive Hybrid Censoring. Communications in StatisticsSimulation and Computation, 46, 74477465, DOI: /10.1080/03610918.2016.1241405. 22. Kundu, D. and Joarder, A. (2006) Analysis of TypeII Progressively Hybrid Censored Data. Computational Statistics and Data Analysis, 50, 25092528. [ DOI:10.1016/j.csda.2005.05.002] 23. Kundu D. (2007). On Hybrid Censored Weibull Distribution. Journal of Statistical Planning and Inference, 137, 21272142. [ DOI:10.1016/j.jspi.2006.06.043] 24. Lin, C.T., Ng, H.K.T. and Chan, P.S. (2009). Statistical Inference of TypeII Progressively Hybrid Censored Data with Weibull Lifetimes. Communications in Statistics—Theory and Methods, 38, 17291710. [ DOI:10.1080/03610920902850069] 25. Nelson, W. (1982). Applied Life Data Analysis; New York: John Wiley and Sons. [ DOI:10.1002/0471725234] 26. Tiku, M.L. and Akkaya, A.D. (2004). Robust Estimation and Hypothesis Testing, New Age International Limited Publishers. New Delhi. 27. Valiollahi, R., Asgharzadeh, A. and Kundu, D. (2017). Prediction of Future Failures for Generalized Exponential Distribution under TypeI or TypeII Hybrid Censoring. Brazilian Journal of Probability and Statistics. 31, 4161. [ DOI:10.1214/15BJPS302] 28. Viveros, R. and Balakrishnan, N. (1994). Interval Estimation of Parameters of Life Progressively Censored Data. Technometrics, 36, 84–91. [ DOI:10.1080/00401706.1994.10485403]
