1. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2014). Improved Confidence Intervals for the Scale Parameter of Burr XII Model Based on Record Values. Computational Statistics, 29, 11531173. [ DOI:10.1007/s0018001404843] 2. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2015a). On the Construction of Preliminary Test Estimator Based on Record Values for the Burr XII model. Communications in StatisticsTheory and Methods, 44, 123. [ DOI:10.1080/03610926.2012.733473] 3. Arabi Belaghi, A.R., Arashi, M. and Tabatabaey, S.M.M. (2015b). Improved Estimators of the Distribution Function Based on Lower Record Values. Statistical papers, 56(2), 453477. [ DOI:10.1007/s0036201405919] 4. Armero, C. and Bayarri, M.J. (1994). Bayesian Prediction in M/M/1Queues. Queing Syst. 15, 401417. [ DOI:10.1007/BF01189248] 5. Clarke, A.B. (1957). Maximum Likelihood Estimates in a Simple Queue. Ann Math Stat., 28, 10361040. [ DOI:10.1214/aoms/1177706808] 6. Dey (2008). A Note On Bayesian Estimation of the Trafic Intensity in M/M/1 Queue and Queue Chaacteristics Quadratic Loss Function. Data Science Journal, 7, 148154. [ DOI:10.2481/dsj.7.148] 7. Kiapour, A. and Naghizadeh Qomi, M. (2016). Shrinkage Preliminary Test Estimation Under a Precautionary Loss Function with Applications on Records and Censored Data, Journal of the Iranian Statistical Society, 15, 7385. [ DOI:10.18869/acadpub.jirss.15.2.73] 8. Lehmann, E.L. (1951). A General Concept of Unbiasedness. Annals of Mathematical Statistica, 22, 587592. [ DOI:10.1214/aoms/1177729549] 9. Mukherjee, S.P. and Chowdhury, S. (2005). Bayesian Estimation of Traffic Intensity. IAPQR Transactions. 30, 89100. 10. Naghizadeh Qomi, M. (2017). Bayesian Shrinkage Estimation based on Rayleigh TypeII Censored Data. Communications in StatisticsTheory and Methods, 46(19), 98599868. [ DOI:10.1080/03610926.2016.1222440] 11. Naghizadeh Qomi, M. and Barmoodeh, L. (2015). Shrinkage Testimation in Exponential Distribution based on Records under Asymmetric Squared Log Error Loss. Journal of Statistical Research of Iran, 12, 225238. [ DOI:10.18869/acadpub.jsri.12.2.225] 12. Ren, H. and Wang, G. (2012). Bayes Estimation of Traffic Intensity in M/M/1 Queue under a Precautionary Loss Function. Procedia Engineering, 29, 36463650. [ DOI:10.1016/j.proeng.2012.01.546] 13. Ehsanes Saleh, A.K.Md. (2006). Theory of Preliminary Test and Steintype Estimation with Applications, John Wiley, New Jersey. [ DOI:10.1002/0471773751] 14. Sharma, K.K. and Kumar, V. (1999). Inference on M/M/1:($infty$:FIFO) queue systems. Opsearch, 36, 2634. [ DOI:10.1007/BF03398559] 15. Srinivas, V., Rao, S.S. and Kale, B.K. (2011). Estimation of Measures in M/M/1 Queue. [ DOI:10.1080/03610926.2010.498653] 16. Communications in StatisticsTheory and Methods, 40, 33273336. 17. Thompson, J.R. (1968). Some Shrunken Techniques for Estimating the Mean. Journal of the American Statistical Association, 63, 113122. [ DOI:10.1080/01621459.1968.11009226]
