[Home ] [Archive]    
Main Menu
Journal Information::
Home::
Archive::
For Authors::
For Reviewers::
Principles of Transparency::
Contact us::
::
Search in website

Advanced Search
..
Committed to

AWT IMAGE

Attribution-NonCommercial
CC BY-NC


AWT IMAGE

Open Access Publishing


AWT IMAGE

Prevent Plagiarism

..
Registered in


..
Statistics
Journal volumes: 17
Journal issues: 34
Articles views: 703517
Articles downloads: 365151

Total authors: 581
Unique authors: 422
Repeated authors: 159
Repeated authors percent: 27

Submitted articles: 369
Accepted articles: 266
Rejected articles: 25
Published articles: 219

Acceptance rate: 72.09
Rejection rate: 6.78

Average Time to Accept: 282 days
Average Time to First Review: 27.2 days
Average Time to Publish: 26.1 days

Last 3 years statistics:
Submitted articles: 36
Accepted articles: 23
Rejected articles: 2
Published articles: 10

Acceptance rate: 63.89
Rejection rate: 5.56

Average Time to Accept: 145 days
Average Time to First Review: 6.9 days
Average Time to Publish: 154 days
____
..
:: Volume 17, Issue 1 (8-2020) ::
JSRI 2020, 17(1): 157-170 Back to browse issues page
A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Masumeh Ahmadzadeh1 , Taban Baghfalaki 2
1- Tarbiat Modares University
2- Tarbiat Modares University , t.baghfalaki@modares.ac.ir
Abstract:   (562 Views)
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framework. To obtain it the ordinary log-likelihood is replaced by the weighted log-likelihood. There is a Bayesian framework as a counterpart to quasi-maximum likelihood method is called Bayesian pseudo posterior estimator. This method is the usual Bayesian approach by replacing likelihood with quasi-likelihood function. Another approach for considering sampling weights called the Bayesian weighted estimator. This method is in fact a data augmentation method in which a quasi-representative sample is generated by sampling instead of the observed data using normalized sampling weights. In this paper, these two approaches are used for parameter estimation of a nominal regression model with random effects. The proposed method is applied to small area estimates for the Tehran labor force survey in 2018.
 
Keywords: Bayesian approach, labor force survey, nominal data, random effects, sampling weights, small area estimation.
Full-Text [PDF 206 kb]   (470 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2022/02/18 | Accepted: 2022/08/27 | Published: 2020/08/22
References
1. Aitkin, M. (2008). Applications of the Bayesian bootstrap in finite population inference. Journal of Official Statistics, 24, 21.
2. Datta, G.S., Lahiri, P., Maiti, T., and Lu, K.L. (1999). Hierarchical Bayes estimation of unemployment rates for the states of the US. Journal of the American Statistical Association, 94, 1074-1082. [DOI:10.1080/01621459.1999.10473860]
3. Fabrizi, E. (2002). Hierarchical Bayesian models for the estimation of unemployment rates in small domains of the italian labour force survey. Statistica, 62, 603-618.
4. Gelman, A., and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7, 457-472. [DOI:10.1214/ss/1177011136]
5. Gunawan, D., Panagiotelis, A., Griffiths, W., and Chotikapanich, D. (2020). Bayesian weighted inference from surveys. Australian & New Zealand Journal of Statistics, 62, 71-94. [DOI:10.1111/anzs.12284]
6. Margolis, D.N., and Okatenko, A. (2008). Job Search with Bayes Priors.
7. Rao, J.N.K., and Wu, C. (2010). Bayesian pseudo‐empirical‐likelihood intervals for complex surveys. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72, 533-544. [DOI:10.1111/j.1467-9868.2010.00747.x]
8. You, Y. (2008). An integrated modeling approach to unemployment rate estimation for sub-provincial areas of Canada. Survey Methodology, 34, 19.
9. You, Y., and Rao, J.N.K. (2002). Small area estimation using unmatched sampling and linking models. Canadian Journal of Statistics, 30, 3-15. [DOI:10.2307/3315862]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadzadeh M, Baghfalaki T. A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data. JSRI 2020; 17 (1) :157-170
URL: http://jsri.srtc.ac.ir/article-1-423-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 1 (8-2020) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.05 seconds with 42 queries by YEKTAWEB 4660