1. Aghababaei Jazi, M. and Alamatsaz, M.H. (2010). Ordering Comparison of Logarithmic Series Random Variables with Their Mixtures. Communications in StatisticsTheory and Methods, 39, 32523263. [ DOI:10.1080/03610920903243728] 2. Aldrete, A.N.G. (2002). Psocoptera (Insecta) from the Sierra Tarahumara, Chihuahua, Mexico. Anales del Instituto de Biologia, Universidad Nacional Autonoma d e Mexico, Serie Zoologia, 73, 145156. 3. Best, D.J., Rayner, J.C. and Thas, O. (2008). Tests of Fit for the Logarithmic Distribution, Journal of Applied Mathematics and Decision Sciences, DOI:10.1155/2008/463781. [ DOI:10.1155/2008/463781] 4. Bohning, D. (1983). Maximum Likelihood Estimation of the Logarithmic Series Distribution. Statistische Hefte, 24, 121140. [ DOI:10.1007/BF02932495] 5. Cordeiro, G.M. and Klein, R. (1994). Bias Correction in ARMA Models. Statistics and Probability Letters, 19, 169176. [ DOI:10.1016/01677152(94)901007] 6. Cox, D.R., Snell, E.J. (1968). A General Definition of Residuals. J. Royal Stat. Soc. Ser. B, 30, 248275. [ DOI:10.1111/j.25176161.1968.tb00724.x] 7. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics, 7, 126. [ DOI:10.1214/aos/1176344552] 8. Fisher, R.A., Corbert, A.S. and Williams, C.B. (1943). The Relation between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. Journal of Animal Ecology, 12, 4258. [ DOI:10.2307/1411] 9. Giles, D.E. (2012). Bias Reduction for the Maximum Likelihood Estimators of the Parameters in the HalfLogistic Distribution. Communications in StatisticsTheory and Methods, 41, 212222. [ DOI:10.1080/03610926.2010.521278] 10. Goulet, V. (2018). Actuar: Actuarial Functions and Heavy Tailed Distributions. R Package Version 3.3.0. https://cran.rproject.org/web/packages/actuar/index.html. 11. Gower, J.C. (1961). A Note on Some Asymptotic Properties of the Logarithmic Series Distribution. Biometrika, 48, 212215. [ DOI:10.1093/biomet/48.12.212] 12. Gupta, R.P. and Jain, G.C. (1976). A Generalized Bivariate Logarithmic Series Distribution. Biometrical Journal, 18, 169173. 13. Izsak, J. and JuhaszNagy, P. (1982). Studies of Lognormality on Mortality Statistics. Biometrical Journal, 24, 731741. [ DOI:10.1002/bimj.4710240803] 14. Lemonte, A.J. , CribariNeto, F., Vasconcellos, K.L.P. (2007). Improved Statistical Inference for the Twoparameter BirnbaumSaunders Distribution. Computational Statistics and Data Analysis, 51, 46564681. [ DOI:10.1016/j.csda.2006.08.016] 15. MacKinnon, J. and Smith, A. (1998). Approximate Bias Correction in Econometrics. Journal of Econometrics, 85, 205230. [ DOI:10.1016/S03044076(97)000997] 16. Mazucheli, J., Menezes, A.F.B. and Dey, S. (2018). Biascorrected Maximum Likelihood Estimators of the Parameters of the Inverse Weibull Distribution. Communications in Statistics Simulation and Computation, DOI: 10.1080/03610918.2018.1433838. [ DOI:10.1080/03610918.2018.1433838] 17. Patil, G.P. (1962). Some Methods of Estimation for the Logarithmic Series Distribution. Biometrics, 18, 6875. [ DOI:10.2307/2527711] 18. Patil, G.P. and Bilidikar, S. (1966). On Minimum Variance Unbiased Estimation for the Logarithmic Series Distribution. Sankhya: The Indian Journal of Statistics, 28, 239250. 19. Ramalingam, S. and Jagbir, S. (1984). A Characterization of the Logarithmic Series Distribution and Its Application. Communications in Statistics  Theory and Methods, 13, 865875. [ DOI:10.1080/03610928408828725] 20. Rasekhi, M., Hamedani, G.G. and Chinipardaz, R. (2017). A Flexible Extension of Skew Generalized Normal Distribution. METRON, 75, 87107.} [ DOI:10.1007/s4030001701062] 21. Reath, J., Dong, J. and Wang, M. (2018). Improved Parameter Estimation of the Loglogistic Distribution with Applications. Computational Statistics, 33, 339356. [ DOI:10.1007/s001800170738y] 22. Wang, M. and Wang, W. (2017). BiasCorrected Maximum Likelihood Estimation of the Parameters of the Weighted Lindley Distribution. Communications in StatisticsSimulation and Computation, 46, 530545. [ DOI:10.1080/03610918.2014.970696] 23. Wani, J.K. and Lo, H.P. (1975). Large Sample Interval Estimation for the Logarithmic Series Distribution. Canadian Journal of Statistics, 3, 277284. [ DOI:10.2307/3315278]
