[Home ] [Archive]    
:: Volume 16, Issue 2 (3-2020) ::
JSRI 2020, 16(2): 319-342 Back to browse issues page
Analysis of Wind Speed Data Based on the New Upper Truncated Inverse Weibull Distribution; A Case Study: Ardabil, Iran
Gholamhossein Yari, Zahra Karimi Ezmareh *1
1- , z_ karimi@mathdep.iust.ac.ir
Abstract:   (458 Views)
In this paper, for the first time, the upper truncated inverse Weibull (UTIW) distribution is proposed for modeling wind speed data.
Since there is a upper limit for empirical wind speed data, this data can be represented by using the UTIW distribution. In this study, the UTIW distribution is introduced and some of its statistical properties are studied. Then, the parameters of this distribution are estimated by using different methods. Simulation studies for these estimators are presented. In addition, the mentioned distribution performance is tested on real wind speed data of Ardabil province in Iran. Based on the results of the analysis, it is found that the presented distribution in this study for modeling wind speed data is more appropriate than recently introduced distributions. Finally, this distribution can be used as an alternative model for evaluating wind speed data.
 
 
Keywords: Inverse Weibull distribution, upper truncated inverse Weibull distribution, wind speed, parameters estimation, Monte-Carlo simulation, model selection criteria.
Full-Text [PDF 3385 kb]   (283 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/08/23 | Accepted: 2021/02/8 | Published: 2021/09/19
References
1. Akdag, S., and Guler, O. (2009). Calculation of Wind Energy Potential and Economic Analysis by Using Weibull Distribution a Case Study from Turkey. part 1: Determination of Weibull Parameters. Energy Sources, 4, 1-8. [DOI:10.1080/15567240802532841]
2. Akgul, F.G., Şenoglu, B., and Arslan, T. (2016). An Alternative Distribution to Weibull for Modeling the Wind Speed Data: Inverse Weibull Distribution. Energy Conversion and Management, 114, 234-240. [DOI:10.1016/j.enconman.2016.02.026]
3. Akpinar, S., and Akpinar, E.K. (2007). Wind Energy Analysis Based on Maximum Entropy Principle (mep)-type Distribution Function. Energy Conversion and Management, 48, 1140-1149. [DOI:10.1016/j.enconman.2006.10.004]
4. Akpinar, S., and Akpinar, E.K. (2009). Estimation of Wind Energy Potential Using Finite Mixture Distribution Models. Energy Conversion and Management, 50, 877-884. [DOI:10.1016/j.enconman.2009.01.007]
5. Arslan, T., Acitas, S., and Senoglu, B. (2017). Generalized Lindley and Power Lindley Distributions for Modeling the Wind Speed Data. Energy Conversion and Management, 152, 300-311. [DOI:10.1016/j.enconman.2017.08.017]
6. Aydin, and Demet, (2018). The Doubly-truncated Exponentiated Inverse Weibull Distribution Anadolu University of Sciences & Technology-B: Theoretical Sciences 6. [DOI:10.20290/aubtdb.326782]
7. Ayodele, T., Jimoh, A., Munda, J., and Agee, J. (2012). Wind Distribution and Capacity Factor Estimation for Wind Turbines in the Coastal Region of South Africa. Energy Conversion and Management, 64, 614-625. [DOI:10.1016/j.enconman.2012.06.007]
8. Brano, VL., Orioli, A., Ciulla, G., and Culotta, S. (2011). Quality of Wind Speed Fitting Distributions for the Urban Area of Palermo, Italy. Renewable Energy, 36, 1026-1039. [DOI:10.1016/j.renene.2010.09.009]
9. Carta, J.A., Ramírez, P., and Velázquez, S. (2008). Influence of The Level of Fit of a Density Probability Function to Wind-Speed Data on the Wecs Mean Power Output Estimation. Energy Conversion and Management, 49, 2647-2655. [DOI:10.1016/j.enconman.2008.04.012]
10. Celik, A.N. (2003). Energy Output Estimation for Small-Scale Wind Power Generators Using Weibull-Representative Wind Data. Journal of Wind Engineering and Industrial Aerodynamics, 91, 693-707. [DOI:10.1016/S0167-6105(02)00471-3]
11. Dabbaghiyan, A., Fazelpour, F., Abnavi, M.D., and Rosen, M.A. (2016). Evaluation of Wind Energy Potential in Province of Bushehr, Iran. Renewable and Sustainable Energy Reviews, 55, 455-466. [DOI:10.1016/j.rser.2015.10.148]
12. De Gusmao, FR., Ortega, E.M., and Cordeiro, G.M. (2011). The Generalized Inverse Weibull Distribution. Statistical Papers, 52, 591-619. [DOI:10.1007/s00362-009-0271-3]
13. Drapella, A. (1993). The Complementary Weibull Distribution: Unknown or Just Forgotten? Quality and Reliability Engineering International, 9, 383-385. [DOI:10.1002/qre.4680090426]
14. Fyrippis, I., Axaopoulos, P.J., and Panayiotou, G. (2010). Wind Energy Potential Assessment in Naxos Island, Greece. Applied Energy, 87, 577-586. [DOI:10.1016/j.apenergy.2009.05.031]
15. Huang, J., and McElroy, M.B. (2015). A 32-Year Perspective on the Origin of Wind Energy in a Warming Climate. Renewable Energy, 77, 482-492. [DOI:10.1016/j.renene.2014.12.045]
16. Ilkiliç, C., and Aydin, H. (2015). Wind Power Potential and Usage in the Coastal Regions of Turkey. Renewable and Sustainable Energy Reviews, 44, 78-86. [DOI:10.1016/j.rser.2014.12.010]
17. Jiang, R., Murthy, D., and Ji, P. (2001). Models Involving Two Inverse Weibull Distributions. Reliability Engineering & System Safety, 73, 73-81. [DOI:10.1016/S0951-8320(01)00030-8]
18. Kantar, Y.M., and Usta, I. (2008). Analysis of Wind Speed Distributions: Wind Distribution Function Derived from Minimum Cross Entropy Principles as Better Alternative to Weibull Function. Energy Conversion and Management, 49, 962-973. [DOI:10.1016/j.enconman.2007.10.008]
19. Kantar, Y.M., and Usta, I. (2015). Analysis of the Upper-Truncated Weibull Distribution for Wind Speed. Energy Conversion and Management, 96, 81-88. [DOI:10.1016/j.enconman.2015.02.063]
20. Kantar, Y.M., Usta, I., Arik, I., and Yenilmez, I. (2018). Wind Speed Analysis Using the Extended Generalized Lindley Distribution. Renewable Energy, 118, 1024-1030. [DOI:10.1016/j.renene.2017.09.053]
21. Kaplan, Y.A. (2015). Overview of Wind Energy in the World and Assessment of Current Wind Energy Policies inTurkey. Renewable and Sustainable Energy Reviews, 43, 562-568. [DOI:10.1016/j.rser.2014.11.027]
22. Keller, A., and Kamath, A. (1982). Alternate Reliability Models for Mechanical Systems. ESA Reliability and Maintainability, p 411-415(SEE N 83-20178 10-38) .
23. Keller, A., Kamath, A., and Perera, U. (1982). Reliability Analysis of Cnc Machine Tools. Reliability Engineering, 3, 449-473. [DOI:10.1016/0143-8174(82)90036-1]
24. Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., and Abbaszadeh, R. (2010). An Assessment of Wind Energy Potential as a Power Generation Source in the Capital of Iran, Tehran. Energy, 35, 188-201. [DOI:10.1016/j.energy.2009.09.009]
25. Khan, M.S., Pasha, G., and Pasha, A.H. (2008). Theoretical Analysis of Inverse Weibull Distribution. WSEAS Transactions on Mathematics, 7, 30-38.
26. Kose, R. (2004). An Evaluation of Wind Energy Potential as a Power Generation Source in Kutahya, Turkey. Energy Conversion and Management, 45, 1631-1641. [DOI:10.1016/j.enconman.2003.10.016]
27. Morgan, E.C., Lackner, M., Vogel, R.M., and Baise, L.G. (2011). Probability Distributions for Offshore Wind Speeds. Energy Conversion and Management, 52, 15-26. [DOI:10.1016/j.enconman.2010.06.015]
28. Morgan, V.T. (1995). Statistical Distributions of Wind Parameters at Sydney, Australia. Renewable Energy, 6, 39-47. [DOI:10.1016/0960-1481(94)E0017-Y]
29. Mudholkar, G.S., Srivastava, D.K., and Kollia, G.D. (1996). A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data. Journal of the American Statistical Association, 91, 1575-1583. [DOI:10.1080/01621459.1996.10476725]
30. Murthy, D.P., Bulmer, M., and Eccleston, J.A. (2004). Weibull Model Selection for Reliability Modelling. Reliability Engineering & System Safety, 86, 257-267. [DOI:10.1016/j.ress.2004.01.014]
31. Ouammi, A., Dagdougui, H., Sacile, R., and Mimet, A. (2010). Monthly and Seasonal Assessment of Wind Energy Characteristics at Four Monitored Locations in Liguria Region (Italy). Renewable and Sustainable Energy Reviews, 14, 1959-1968. [DOI:10.1016/j.rser.2010.04.015]
32. Ouarda, T.B., and Charron, C. (2018). On the Mixture of Wind Speed Distribution in a Nordic Region. Energy Conversion and Management, 174, 33-44. [DOI:10.1016/j.enconman.2018.08.007]
33. Ouarda, T.B., Charron, C., Shin, J.Y., Marpu, P.R., Al-Mandoos, A.H., Al-Tamimi, M.H., Ghedira, H., and Al Hosary, T. (2015). Probability Distributions of Wind Speed in the Uae. Energy Conversion and Management, 93, 414-434. [DOI:10.1016/j.enconman.2015.01.036]
34. Ozgur, M., Arslan, O., Kose, R., and Peker, K. (2009). Statistical Evaluation of Wind Characteristics in Kutahya, Turkey. Energy Sources, 31, 1450-1463. [DOI:10.1080/15567030802093039]
35. Pasari, S., and Dikshit, O. (2014). Impact of Three-Parameter Weibull Models in Probabilistic Assessment of Earthquake Hazards. Pure and Applied Geophysics, 171, 1251-1281. [DOI:10.1007/s00024-013-0704-8]
36. Qin, X., Zhang, J.S., and Yan, X.D. (2012). Two Improved Mixture Weibull Models for the Analysis of Wind Speed Data. Journal of Applied Meteorology and Climatology, 51, 1321-1332. [DOI:10.1175/JAMC-D-11-0231.1]
37. Ramírez, P., and Carta, J.A. (2006). The Use of Wind Probability Distributions Derived from the Maximum Entropy Principle in the Analysis of Wind Energy. a Case Study. Energy Conversion and Management, 47, 2564-2577. [DOI:10.1016/j.enconman.2005.10.027]
38. Rubinstein, R.Y., and Kroese, D.P. (2016). Simulation and the Monte Carlo Method, vol 10. John Wiley & Sons. [DOI:10.1002/9781118631980]
39. Safari, B., and Gasore, J. (2010). A Statistical Investigation of Wind Characteristics and Wind Energy Potential Based on the Weibull and Rayleigh Models in Rwanda. Renewable Energy, 35, 2874-2880. [DOI:10.1016/j.renene.2010.04.032]
40. Shamilov, A., Kantar, Y.M., and Usta, I. (2008). Use of Minmaxent Distributions Defined on Basis of Maxent Method in Wind Power Study. Energy Conversion and Management, 49, 660-677. [DOI:10.1016/j.enconman.2007.07.045]
41. Soukissian, T. (2013). Use of Multi-Parameter Distributions for Offshore Wind Speed Modeling: The Johnson Sb Distribution. Applied Energy, 111, 982-1000. [DOI:10.1016/j.apenergy.2013.06.050]
42. Wang, J., Qin, S., Jin, S., and Wu, J. (2015). Estimation Methods Review and Analysis of Offshore Extreme Wind Speeds and Wind Energy Resources. Renewable and Sustainable Energy Reviews, 42, 26-42. [DOI:10.1016/j.rser.2014.09.042]
43. Weisser, D. (2003). A Wind Energy Analysis of Grenada: An Estimation Esing the 'Weibull'Density Function. Renewable Energy, 28, 1803-1812. [DOI:10.1016/S0960-1481(03)00016-8]
44. Yip, C.M.A., Gunturu, U.B., and Stenchikov, G.L. (2016). Wind Resource Characterization in the Arabian Peninsula. Applied Energy, 164, 826-836. [DOI:10.1016/j.apenergy.2015.11.074]
45. Zhang, T., and Xie, M. (2011). On the Upper Truncated Weibull Distribution and Its Reliability Implications. Reliability Engineering & System Safety, 96, 194-200. [DOI:10.1016/j.ress.2010.09.004]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yari G, Karimi Ezmareh Z. Analysis of Wind Speed Data Based on the New Upper Truncated Inverse Weibull Distribution; A Case Study: Ardabil, Iran. JSRI. 2020; 16 (2) :319-342
URL: http://jsri.srtc.ac.ir/article-1-379-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 2 (3-2020) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.04 seconds with 29 queries by YEKTAWEB 4410