1. AL-Hussaini, E.K. (1999). Predicting Observable from a General Class of Distributions. Journal of Statistical Planning and Inference, 79, 79-91. [ DOI:10.1016/S0378-3758(98)00228-6] 2. Arnold, B.C., Balakrishnan, N., and Nagaraja, H.N. (2008). A First Course in Order Statistics. Classic Edition, SIAM, Philadelphia. 3. Balakrishnan, N., Beutner, E., and Kamps, U. (2008). Order Restricted Inference for Sequential K-out-of n Systems. Journal of Multivariate Analysis. 99, 1489-1502. [ DOI:10.1016/j.jmva.2008.04.014] 4. Balakrishnan, N., and Kateri, M. (2008). On the Maximum Likelihood Estimation of Parameters of Weibull Distribution Based on Complete and Censored Data. Statistics and Probability Letters, 78, 2971-2975. [ DOI:10.1016/j.spl.2008.05.019] 5. Bedbur, S. (2010). UMPU Test Based on Sequential Order Statistics,Journal of Statistical Planning and Inference, 140, 2520-2530. [ DOI:10.1016/j.jspi.2010.03.021] 6. Billinton, R., and Allan, R. (1992). Reliability of Engineering Systems: Concepts and Techniques. Second edition, Springer-Verlag, New York. 7. Casella, C., and Hwang, J.T.G. (2012). Shrinkage Confidence Procedures. Statistical Science, 27, 51-60. [ DOI:10.1214/10-STS319] 8. Cramer, E., and Kamps, U. (1996). Sequential Order Statistics and K-out-of-n Systems with Sequentially Adjusted Failure Rates. Annals of the Institute of Statistical Mathematics, 48, 535-549. [ DOI:10.1007/BF00050853] 9. Cramer, E., and Kamps, U. (1998). Sequential K-out-of-n Systems with Weibull Components. Economic Quality Control, 13, 227-239. 10. Cramer, E., and Kamps, U. (2001). Sequential K-out-of-n Systems, In: N. Balakrishnan and C.R. Rao (Eds.). Handbook of Statistic, Vol. 20, Advances in Reliability, 301-372, North-Holland, Amsterdam. [ DOI:10.1016/S0169-7161(01)20014-5] 11. Cramer, E., and Kamps, U. (2003). Marginal Distributions of Sequential and Generalized Order Statistics. Metrika, 58, 293-310. [ DOI:10.1007/s001840300268] 12. Johnson, N.L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions-Vol. 1, Second edition, John Wiley and Sons, New York. 13. Hashempour, M., and Doostparast, M. (2017). Considered Bayesian Inference on Multiply Sequential Order Statistics from Heterogeneous Exponential Populations with GLR Test for Homogeneity. Communications in Statistics-Theory and Methods, 46, 8086-8100. [ DOI:10.1080/03610926.2016.1175625] 14. Kamps, U. (1995). A Concept of Generalized Order Statistics. Teubner, Stuttgart, Germany. [ DOI:10.1007/978-3-663-09196-7_2] 15. Lehmann, E.L., and Casella, G. (1998). Theory of Point Estimation. Second edition, Springer-Verlag, New York. 16. Lehmann, E.L., and Romano, J.P. (2005). Testing Statistical Hypothesis. Third edition, Springer-Verlag, New York. 17. Mann, N.R., and Fertig, K.W. (1973). Tables for Obtaining Weibull Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme Value Distribution. Technometrics, 15, 87-101. [ DOI:10.1080/00401706.1973.10489013] 18. Schenk, N., Burkschat, M., Cramer, E., and Kamps, U. (2011). Bayesian Estimation and Prediction with Multiply Type-II Censored Samples of Sequential Order Statistics from One- and Two-Parameter Exponential Distributions, Journal of Statistical Planning and Inference, 141, 1575-1587. [ DOI:10.1016/j.jspi.2010.11.009] 19. Shafay, A.R., Balakrishnan, N., and Sultan, K.S. (2012). Two-Sample Bayesian Prediction for Sequential Order Statistics from Exponential Distribution Based on Multiply Type-II Censored Samples. Journal of Statistical Computation and Simulation, 84, 526-544. [ DOI:10.1080/00949655.2012.718779] 20. Smith, P.J. (2002). Analysis of Failure and Survival Data. Chapman and Hall/CRC Press, Boca Raton, Florida.
|