1. Aarset, M.V. (1987). How to Identify Bathtub Hazard Rate. IEEE Transactions Reliability, 36, 106108. [ DOI:10.1109/TR.1987.5222310] 2. Aigner, D.J., Lovell, C.A.K. and Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Models. J. Econometrics, 6, 2137. [ DOI:10.1016/03044076(77)900525] 3. Azzalini, A. (1985). A Class of Distributions which Includes the Normal Ones. Scand. J. Statist., 12, 171178. 4. Bland, J.M. and Altman, D.G. (1999). Measuring Agreement in Method Comparison Studies. Stat. Meth. Med. Res, 8, 135160. [ DOI:10.1177/096228029900800204] 5. Chen, G. and Balakrishnan, N. (1995). A General Purpose Approximate Goodnessoffit Test. Journal of Quality Technology, 27, 154161. [ DOI:10.1080/00224065.1995.11979578] 6. Chou, C.Y. and Liu, H.R. (1998). Properties of the Halfnormal Distribution and Its Application to Quality Control. Journal of Industrial Technology, 14, 47. 7. Cooray, K. and Ananda, M.M.A. (2008). A Generalization of the Halfnormal Distribution with Applications to Lifetime Data. Commun. Statist. Theor. Meth., 37, 13231337. [ DOI:10.1080/03610920701826088] 8. Daniel, C. (1959). Use of Halfnormal Plots in Interpreting Factorial Twolevel Experiments. Technometrics, 1, 311341. [ DOI:10.1080/00401706.1959.10489866] 9. Dobzhansky, T. and Wright, S. (1947). Genetics of Natural Populations X. Dispersal Rates in Drosophila Pseudoobscura. Genetics, 28, 304340. 10. Flecher C., Allard, D. and Naveau, P. (2009). Truncated Skewnormal Distributions: Estimation by Weighted Moments and Application to Climatic Data. INRA Research Report 39, Available from: http://www.avignon.inra.fr/content/download/7204/111974/version/1/ file/RR200939.pdf. 11. Gelman, A. (2006). Prior Distributions for Variance Parameters in Hierarchical Models. Bayesian analysis, 1, 515534. [ DOI:10.1214/06BA117A] 12. Glaser, R.E. (1980). Bathtub and Related Failure Rate Characterizations. Journal of the American Statistical Association, 75, 667672. Gradshteyn, I.S. and Ryzhik, I.M. (2000). Table of Integrals, Series, and Products. Academic Press, San Diego. [ DOI:10.1080/01621459.1980.10477530] 13. Haberle, J.G. (1991). Strength and Failure Mechanisms of Unidirectional Carbon FibreReinforced Plastics Under Axial Compression. Unpublished Ph.D. thesis, Imperial College, London. 14. Hinkley, D. (1977). On Quick Choice of Power Transformations. The American Statistician, 26, 6769. [ DOI:10.2307/2346869] 15. Leslie, H. Miller (1956). Table of Percentage Points of Kolmogorov Statistics. J. Am. Stat. Assoc., 51, 111121. [ DOI:10.1080/01621459.1956.10501314] 16. Meeusen, W.J. and van den Broeck, J. (1977). Efficiency Estimation from Cobb Douglas Production Functions with Composed Error. Int. Econ. Rev, 8, 435444. [ DOI:10.2307/2525757] 17. Mitchell, M.R. and Landgraf, R.W. (1996). Advances in Fatigue Lifetime Predictive Techniques: 3rd Volume, ASTM International. [ DOI:10.1520/STP1292EB] 18. Nichols, M.D. and Padgett, W.J. (2006). A Bootstrap Control Chart for Weibull Percentiles. Quality and Reliability Engineering International, 22, 141151. [ DOI:10.1002/qre.691] 19. Pescim, R.R., Demetrio, C.G.B., Cordeiro, G.M., Ortega, E.M.M. and Urbano, M.R. (2009). The Beta Generalized Halfnormal Distribution. Comput. Stat. Data Anal., 54, 945957. [ DOI:10.1016/j.csda.2009.10.007] 20. Pewsey, A. (2002). Largesample Inference for the General Halfnormal Distribution. Commun. Statist. Theor. Meth., 31, 10451054. [ DOI:10.1081/STA120004901] 21. Pewsey, A. (2004). Improved Likelihood based Inference for the General Halfnormal Distribution. Commun. Statist. Theor. Meth., 33, 197204. [ DOI:10.1081/STA120028370] 22. Radson, D. and Alwan, L.C. (1995). Detecting Variance Reductions using the Moving Range. Quality Engineering, 8, 165178. [ DOI:10.1080/08982119508904612] 23. Smith, R.L. (1985). Maximum Likelihood Estimation in a Class of Nonregular Cases. Biometrika, 72, 6790. [ DOI:10.1093/biomet/72.1.67] 24. Wiper, M.P., Giron, F.J. and Pewsey, A. (2008). Objective Bayesian Inference for the Halfnormal and Halft distributions. Commun. Statist. Theor. Meth., 37, 31653185. [ DOI:10.1080/03610920802105184] 25. Watson, G.S. (1961). Goodnessoffit Tests on a Circle. Biometrika, 48, 109114. [ DOI:10.1093/biomet/48.12.109]
