1. Akaike, H. (1973). Information Theory and an Extension of Maximum Likelihood Principle. Second International Symposium on Information Theory, Akademia Kiado, 267281. 2. Chen, H., Chen, J. and Kalbfeisch, J.D. (2001). A Modified Likelihood Ratio Test for Homogeneity in the Finite Mixture Models. Journal of the Royal Statistical Society. Series B (Statistical Methodology). 63, 1929. [ DOI:10.1111/14679868.00273] 3. Chen, J. and Kalbfleisch, J.D. (2005). Modified Likelihood Ratio Test in Finite Mixture Models with a Structural Parameter. Journal of statistical Planning and Inference, 129, 93107. [ DOI:10.1016/j.jspi.2004.06.041] 4. Chernoff, H. and Lander, E. (1995). Asymptotic Distribution of the Likelihood Ratio Test that a Mixture of Two Binomials is a Single Binomial. Journal of Statistical Planning and Inference, 43, 1940. [ DOI:10.1016/03783758(94)00006H] 5. Crawford, S.L. (1994). An Application of the Laplace Method to Finite Mixture Distributions. Journal of the American Statistical Association, 89, 259267. [ DOI:10.1080/01621459.1994.10476467] 6. DacunhaCastelle, D. and Gassiat, E. (1999). Testing the Order of a Model using Locally Conic Parametrization: Population Mixtures and Stationary ARMA Processes. The Annals of Statistics, 27, 11781209. [ DOI:10.1214/aos/1017938921] 7. Everitt, B.S. and David, J. Hand (1981). Finite Mixture Distributions. Monographs on Applied Probability and Statistics. Chapman and Hall, London, New York. [ DOI:10.1007/9789400958975] 8. Fallahigilan, S. and Sayyareh, A. (2016). Finite Mixture Model Selection for Total Energy Consumption. International Journal of Energy and Statistics, 4. [ DOI:10.1142/S2335680416500095] 9. Feng, Z.D. and McCulloch, C.E. (1994). On the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture with Unequal Variances. Biometrics, 11581162. [ DOI:10.2307/2533453] 10. Ghosh, J.H. and Sen, P.K. (1985). On the Asymptotic Performance of the Log Likelihood Ratio Statistic for the Mixture Model and Related Results. In: Le Cam, L.M., Olshen, R.A. (Eds.) Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. II. Wadsworth, Monterey, pp. 789806. 11. Jeffries, N.O. (2003). A Note on Testing the Number of Components in a Normal Mixture. Biometrika, 90, 991994. [ DOI:10.1093/biomet/90.4.991] 12. Kazakos, D. (1977). Recursive Estimation of Prior Probabilities using a Mixture. IEEE Transactions on Information Theory, 23, 203211. [ DOI:10.1109/TIT.1977.1055693] 13. Lo, Y. (2005). Likelihood Ratio Tests of the Number of Components in a Normal Mixture with Unequal Variances. Statistics & probability letters, 71, 225235. [ DOI:10.1016/j.spl.2004.11.007] 14. Lo, Y., Mendell, N.R. and Rubin, D.B. (2001). Testing the Number of Components in a Normal Mixture. Biometrika, 88, 767778. [ DOI:10.1093/biomet/88.3.767] 15. McLachlan, G.J. and Basford, K.E. (1988). Mixture Models: Inference and Applications to Clustering, 84. [ DOI:10.2307/2289892] 16. McLachlan, G. and Peel, D. (2004). Finite Mixture Models. John Wiley & Sons. 17. Morgan, G.B. (2015). Mixed Mode Latent Class Analysis: An Examination of Fit Index Performance for Classification. Structural Equation Modeling: A Multidisciplinary Journal, 22, 7686. [ DOI:10.1080/10705511.2014.935751] 18. Morgan, G.B., Hodge, K.J. and Baggett, A.R. (2016). Latent Profile Analysis with Nonnormal Mixtures: A Monte Carlo Examination of Model Selection using Fit Indices. Computational Statistics & Data Analysis, 93, 146161. [ DOI:10.1016/j.csda.2015.02.019] 19. Nylund, K.L., Asparouhov, T. and Muthen, B.O. (2008). Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study: Erratum. [ DOI:10.1080/10705510701575396] 20. Redner, R.A. and Walker, H.F. (1984). Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM review, 26, 195239. [ DOI:10.1137/1026034] 21. Sayyareh, A. (2016). Admissible Set of Rival Models based on the Mixture of KullbackLeibler Risks. JSRI. 13, 5988 [ DOI:10.18869/acadpub.jsri.13.1.4] 22. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6, 461464. [ DOI:10.1214/aos/1176344136] 23. Scott, A.J. and Symons, M.J. (1971). Clustering Methods based on Likelihood Ratio Criteria. Biometrics, 387397. [ DOI:10.2307/2529003] 24. Symons, M.J. (1981). Clustering Criteria and Multivariate Normal Mixtures. Biometrics, 3543. [ DOI:10.2307/2530520] 25. Teicher, H. (1961). Identifiability of Mixtures. The Annals of Mathematical Statistics, 32, 244248. [ DOI:10.1214/aoms/1177705155] 26. Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley, New York. 27. Vuong, Q.H. (1989). Likelihood Ratio Tests for Model Selection and Nonnested Hypotheses. Econometrica: Journal of the Econometric Society, 307333. [ DOI:10.2307/1912557] 28. Wald, A. (1948). Estimation of a Parameter when the Number of Unknown Parameters Increases Indefinitely with the Number of Observations. The Annals of Mathematical Statistics, 220227. [ DOI:10.1214/aoms/1177730246] 29. White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica: Journal of the Econometric Society, 125. [ DOI:10.2307/1912526] 30. Wichitchan, S., Yao, W. and Yang, G. (2018). Hypothesis Testing for Finite Mixture Models. Computational Statistics & Data Analysis. [ DOI:10.1016/j.csda.2018.05.005] 31. Yakowitz, S.J. and Spragins, J.D. (1968). On the Identifiability of Finite Mixtures. The Annals of Mathematical Statistics, 209214. [ DOI:10.1214/aoms/1177698520]
