1. Adamski, K., Human, S., and Bekker, A. (2012). A Generalized Multivariate Beta Distribution: Control Charting When the Measurements are from an Exponential Distribution. Statistical Papers, 53, 1045-1064. [ DOI:10.1007/s00362-011-0407-0] 2. Alt, F.B. (1985). Multivariate Quality Control. John Wiley and Sons, 110-122. 3. Bayer, F., Tondolo, C., and Müller, F. (2018). Beta Regression Control Chart for Monitoring Fractions and Proportions. Computers and Industrial Engineering, 119, 416-426. [ DOI:10.1016/j.cie.2018.04.006] 4. Ghosh, I. (2019). On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey. Stochastics and Quality Control, 34, 115-121. [ DOI:10.1515/eqc-2018-0029] 5. Jolevska-Tuneska, B., and Jolevski, I. (2013). Some Results on the Digamma Function. Applied Mathematics and Information Sciences, 7, 167-170. [ DOI:10.12785/amis/070120] 6. Lee Ho, L., and Bourguignon, M. (2018). Control Charts to Monitor Rates and Proportions. Quality and Reliability Engineering International, 35, 1-10. [ DOI:10.1002/qre.2381] 7. Libby, D., and Novick, M. (1982). Multivariate Generalized Beta Distributions with Applications to Utility Assessment. Educational Statistics, 7, 271-294. [ DOI:10.3102/10769986007004271] 8. Montgomery, D.C. (2013). Design and Analysis of Experiments, John Wiley and Sons, 110-122. 9. Nadarajah, S. (2007). A New Bivariate Beta Distribution with Application to Drought Data. Metron. LXV (2), 153-174. [ DOI:10.1007/BF02832312] 10. Nadarajah, S. (2007). The Bivariate F2 Beta Distribution. American Journal of Mathematical and Management Sciences. 27, 351-368. [ DOI:10.1080/01966324.2007.10737705] 11. Nadarajah, S., Hsing Shih, S., and Nagar, D. (2017). A New Bivariate Beta Distribution. Statistics, 51, 455-474. [ DOI:10.1080/02331888.2016.1240681] 12. Nadarajah, S., and Kotz, S. (2005). Some Bivariate Beta Distributions. Statistics, 39, 457-466. [ DOI:10.1080/02331880500286902] 13. Olkin, I., and Liu, R. (2003). A Bivariate Beta Distribution. Statistics and Probability Letters, 62, 407-412. [ DOI:10.1016/S0167-7152(03)00048-8] 14. Orozco-Castaneda, J., Nagar, D., and Gupta, A. (2012). Generalized Bivariate Beta Distributions Involving Appell's Hypergeometric Function of the Second Kind. Computers and Mathematics with Applications, 64, 2507-2519. [ DOI:10.1016/j.camwa.2012.06.006] 15. Sant'Anna, A., and Ten Caten, C. (2012). Beta Control Charts for Monitoring Fraction Data. Expert Systems with Applications, 39, 10236-10243. [ DOI:10.1016/j.eswa.2012.02.146] 16. Saleh, N.A., Mahmoud, M.A., Keefe, M.J., and Woodall, W.H.(2015). The Difficulty in Designing Shewhart X and $bar{X}$ Control Charts with Estimated Parameters. Journal of Quality Technology, 47, 127-138. [ DOI:10.1080/00224065.2015.11918120] 17. Sarabia, M., Prieto, F., and Jordá, V. (2014). Bivariate Beta-Generated Distributions with Applications to Well-being Data. Statistical Distributions and Applications, 1, 1-26. [ DOI:10.1186/2195-5832-1-15] 18. World Health Organization (2002). Hepatitis C. Retrieved from: http://www.who.int/csr/disease/hepatitis/Hepc.pdf. 19. Wright, S. (1937). The Distribution of Gene Frequencies in Populations. Proceedings of the National Academy of Sciences, 23, 307-320. [ DOI:10.1073/pnas.23.6.307]
|