1. Aghamohammadi, A. and Meshkani, M.R. (2017). Bayesian quantile regression for skew-normal linear mixed models. Communications in Statistics - Theory and Methods, 46, 10953-10972. DOI: 10.1080/03610926.2016.1257713. [ DOI:10.1080/03610926.2016.1257713] 2. Alhamzawi, R., Yu, K., Vinciotti, V., and Tucker, A. (2011). Prior elicitation for mixed quantile regression with an allometric model. Environmetrics, 22, 911-920. [ DOI:10.1002/env.1118] 3. Bravo, F. (2020). Semiparametric quantile regression with random censoring. Ann. Inst. Stat. Math., 72, 265-295.
https://doi.org/10.1007/s10463-018-0688-3 [ DOI:10.1007/s10463-018-0688-3.] 4. Cai, Z., and Xiao, Z. (2015). Semiparametric quantile regression estimation in dynamic models with partially varying coefficients. Journal of Econometrics, 167, 413-425. [ DOI:10.1016/j.jeconom.2011.09.025] 5. Chen, X., Sun, J., and Liu, L. (2015). Semiparametric partial linear quantile regression of longitudinal data with time varying coefficients and informative observation times. Statistica Sinica, 25, 1437-1458. [ DOI:10.5705/ss.2013.317] 6. Diggle, P., Heagerty, P., Liang, K.Y., and Zeger, S. (2002). Analysis of Longitudinal Data, Oxford University Press. 7. Fairclough, N. (2005). Peripheral Vision: Discourse Analysis in Organization Studies: The Case for Critical Realism, Organization Studies, 26, 915-939. [ DOI:10.1177/0170840605054610] 8. Fan, J. (1992). Design-adaptive nonparametric regression. Journal of American Statistical Association, 87, 998- 1004. [ DOI:10.1080/01621459.1992.10476255] 9. Fan, J. (1993). Local linear regression smoothers and their minimax efficiency. Annals of Statistics, 21, 196-216. [ DOI:10.1214/aos/1176349022] 10. Fan, J., and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. Annals of Statistics, 20, 2008-2036. [ DOI:10.1214/aos/1176348900] 11. Fan, J., Heckman, N.E., and Wand, M.P. (1995). Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions. Journal of the American Statistical Association, 90, 141-150. doi:10.2307/2291137. [ DOI:10.2307/2291137] 12. Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (2008). Longitudinal Data Analysis. Boston, CRC Press. [ DOI:10.1201/9781420011579] 13. Fu, L., and Wang, Y.G. (2012). Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal., 56, 2526-2538. [ DOI:10.1016/j.csda.2012.02.005] 14. Gelman, and Rubin, D.B. (1992). Inference from iterative simulation using sequences. Statistical Science, 7, 457-511. [ DOI:10.1214/ss/1177011136] 15. Geraci, M., and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics, 8, 140-154. [ DOI:10.1093/biostatistics/kxj039] 16. Ghasemzadeh, S., Ganjali, M., and Baghfalaki, T. (2020). Bayesian quantile regression for joint modeling of longitudinal mixed ordinal and continuous data. Communications in Statistics-Simulation and Computation, 49, 375-395. [ DOI:10.1080/03610918.2018.1484482] 17. Hao, L., and Naiman, D.Q. (2007). Quantile Regression. New York, Sage. [ DOI:10.4135/9781412985550] 18. Hong, H.G., He, X. (2010). Prediction of functional status for the elderly based on a new ordinal regression model. Journal of American Statistical Association, 105, 930-941. [ DOI:10.1198/jasa.2010.ap08631] 19. Hong, H.G., and Zhou, J. (2013). A multi-index model for quantile regression with ordinal data. Journal of Applied Statistics, 40, 1231-1245. [ DOI:10.1080/02664763.2013.785489] 20. Huang, Y. (2016). Quantile regression-based Bayesian semiparametric mixed-effects models for longitudinal data with non-normal, missing and mismeasured covariate, Journal of Statistical Computation and Simulation, 86, 1183-1202, DOI: 10.1080/00949655.2015.1057732 [ DOI:10.1080/00949655.2015.1057732] 21. Irene, G., Rezaul, K., and Anneleen, V. (2020). Semiparametric quantile regression using family of quantile-based asymmetric densities. Computational Statistics & Data Analysis, 157, 107-129.
https://doi.org/10.1016/j.csda.2020.107129 [ DOI:10.1016/j.csda.2020.107129.] 22. Karlsson, A. (2007). Nonlinear quantile regression estimation of longitudinal data. Communications in Statistics-Simulation and Computation. 37, 114-131. [ DOI:10.1080/03610910701723963] 23. Koenker, R., and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50. [ DOI:10.2307/1913643] 24. Koenker, R. (2004). Quantile regression for longitudinal data. J. Multivar. Anal., 91, 74-89. [ DOI:10.1016/j.jmva.2004.05.006] 25. Koenker, R. (2005). Quantile regression. Cambridge, Cambridge university press. [ DOI:10.1017/CBO9780511754098] 26. Kottas, A., and Krnjajic, M. (2009) Bayesian Semiparametric Modelling in Quantile Regression. Scandinavian Journal of Statistics, 36, 297-319. [ DOI:10.1111/j.1467-9469.2008.00626.x] 27. Kotz, S., Kozubowski, T.J., and Podgorski, K. (2001). The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Boston, Birkhauser. 28. Kozumi, H., and Kobayashi, G. (2011). Gibbs sampling methods for Bayesian quantile regression. Journal of Statistical Computation and Simulation, 81, 1565-1578. [ DOI:10.1080/00949655.2010.496117] 29. Matteo, S.L., and Emmanuel, J.C. (2020). A comparison of some conformal quantile regression methods. Stat., 9. [ DOI:10.1002/sta4.261] 30. Noorian, S., Ganjali, M., and Bahrami Samani, E. (2016). A Bayesian test of homogeneity of association parameter using transition modeling of longitudinal mixed responses. Journal of Applied Statistics, 43, 1850-1863. [ DOI:10.1080/02664763.2015.1125858] 31. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/. 32. Roca, P., and Ordonez, C.P. (2019). Predicting pollution incidents through semiparametric quantile regression models. Stochastic Environmental Research and Risk Assessment, 33, 673-685. DOI:10.1007/s00477-019-01653-7. [ DOI:10.1007/s00477-019-01653-7] 33. Samani, E.B., and Ganjali, M. (2011). Sensitivity analysis for non-ignorable missing responses with application to multivariate Random effect model. Metron, 69, 309-322. [ DOI:10.1007/BF03263564] 34. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639. [ DOI:10.1111/1467-9868.00353] 35. Wang, Huixia, J., Xingdong, F., and Chen, D. (2019). Copula-based quantile regression for longitudinal data. Statistica Sinica, 29, 245-264. [ DOI:10.5705/ss.202016.0135] 36. Wu, H., and Zhang, J.T. (2006). Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches (Vol. 515). John Wiley and Sons. 37. Yang, H., Chen, Z., and Zhang, W. (2019). Bayesian Nonlinear Quantile Regression Approach for Longitudinal Ordinal Data. Communications in Mathematics and Statistics, 7, 123-140. DOI:10.1007/s40304-018-0148-7. [ DOI:10.1007/s40304-018-0148-7] 38. Yu, K., Moyeed, R.A. (2001). Bayesian quantile regression. Stat. Probab.Lett, 54, 437-447. [ DOI:10.1016/S0167-7152(01)00124-9] 39. Yu, K., and Zhang, J. (2005). A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34, 1867-1879. [ DOI:10.1080/03610920500199018] 40. Zhou, L.H., and M. Li, R. (2012). Semiparametric quantile regression with high-dimensional covariates. Statistica Sinica, 22, 1379-1401 [ DOI:10.5705/ss.2010.199] 41. Zhou, L. (2010). Conditional quantile estimation with ordinal data , Ph.D. thesis, University of South Carolina.
|