1. Basawa, I.V., McCormick, W.P., and Sriram, T.N. (1990). Sequential Estimation for Dependent Observations with an Application to NonStandard Autoregressive Processes. Stochastic processes and their applications, 35, 149168. [ DOI:10.1016/03044149(90)90129G] 2. Basu, A.K., and Das, J.K. (1997). Sequential Estimation of the Autoregressive Parameters in Ar(p) Model. Sequential Analysis, 16, 124. [ DOI:10.1080/07474949708836370] 3. Brockwell, P.J., and Davis, R.A. (1987). Time Series: Theory and Methods. 2nd ed., Springer Texts in Statistics. [ DOI:10.1007/9781489900043] 4. FakhreZakeri, I., and Lee, S. (1992). Sequential Estimation of the Mean of a Linear Process. Sequential analysis, 11, 181197. [ DOI:10.1080/07474949208836252] 5. Ghosh, M., Mukhopadhyay, N., and Sen, P.K. (1997). Sequential Estimation, New York, Wiley. [ DOI:10.1002/9781118165928] 6. Gombay, E. (2010). Sequential Confidence Intervals for Time Series. Periodica Mathematica Hungarica, 61, 183193. [ DOI:10.1007/s109980103183z] 7. Hu, J., and Zhuang, Y. (2020). A broader class of modified twostage minimum risk point estimation procedures for a normal mean. Communications in StatisticsSimulation and Computation, 115. [ DOI:10.1080/03610918.2020.1842887] 8. Karmakar, B., and Mukhopadhyay, I. (2018). Risk Efficient Estimation of Fully Dependent Random Coefficient Autoregressive Models of General Order. Communications in StatisticsTheory and Methods, 47, 42424253. [ DOI:10.1080/03610926.2017.1371758] 9. Karmakar, B., and Mukhopadhyay, I. (2019). RiskEfficient Sequential Estimation of Multivariate Random Coefficient Autoregressive Process. Sequential Analysis, 38, 2645. [ DOI:10.1080/07474946.2019.1574441] 10. Kashkovsky, D.V., and Konev, V.V. (2008). Sequential Estimates of the Parameters in a Random Coefficient Autoregressive Process. Optoelectronics, Instrumentation and Data Processing, 44, 5261. [ DOI:10.3103/S8756699008010081] 11. Khalifeh, A., Mahmoudi, E., and Chaturvedi, A. (2020). Sequential FixedAccuracy Confidence Intervals for the StressStrength Reliability Parameter for the Exponential Distribution: TwoStage Sampling Procedure. Computational Statistics, 35, 15531575. [ DOI:10.1007/s00180020009575] 12. Kusainov, M.I. (2015). Risk Efficiency of Adaptive OneStep Prediction of Autoregression with Parameter Drift. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel quotesingle naya tekhnika i informatika, 32, 3343. [ DOI:10.17223/19988605/32/4] 13. Lai, T.L., and Wei, C.Z. (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. The Annals of Statistics, 10, 154166. [ DOI:10.1214/aos/1176345697] 14. Lee, S. (1994). Sequential Estimation for the Parameters of a Stationary Autoregressive Model. Sequential Analysis, 13, 301317. [ DOI:10.1080/07474949408836311] 15. Lee, S., and Sriram,T.N. (1999). Sequential Point Estimation of Parameters in a Threshold AR(1) Model. Stochastic processes and their Applications, 84, 343355. [ DOI:10.1016/S03044149(99)000605] 16. Mahmoudi, E., Khalifeh, A., and Nekoukhou, V. (2019). Minimum Risk Sequential Point Estimation of the StressStrength Reliability Parameter for Exponential Distribution. Sequential Analysis, 38, 279300. [ DOI:10.1080/07474946.2019.1649347] 17. Merlevede, F., and Peligrad, M. (2013). Rosenthaltype inequalities for the maximum of partial sums of stationary processes and examples. The Annals of Probability, 41, 914960. [ DOI:10.1214/11AOP694] 18. Moran, P.A.P. (1953). The statistical analysis of the Canadian lynx cycle. Australian Journal of Zoology, 1, 291298. [ DOI:10.1071/ZO9530291] 19. Mukhopadhyay, N. (1980). A Consistent and Asymptotically Efficient TwoStage Procedure to Construct Fixed Width Confidence Intervals for the Mean. Metrika, 27, 281284. [ DOI:10.1007/BF01893607] 20. Mukhopadhyay, N., and Duggan, W.T. (1997). Can a TwoStage Procedure Enjoy SecondOrder Properties. Sankhya: The Indian Journal of Statistics, Series A, 59, 435448. 21. Mukhopadhyay, N., and Duggan, W.T. (1999). On a TwoStage Procedure Having SecondOrder Properties with Applications. Annals of the Institute of Statistical Mathematics, 51, 621636. [ DOI:10.1023/A:1004074912105] 22. Mukhopadhyay, N., and Sriram, T.N. (1992). On Sequential Comparisons of Means of FirstOrder Autoregressive Models. Metrika, 39, 155164. [ DOI:10.1007/BF02613995] 23. Mukhopadhyay, N., and Zacks, S. (2018). Modified Linex TwoStage and Purely Sequential Estimation of the Variance in a Normal Distribution with Illustrations Using Horticultural Data. Journal of Statistical Theory and Practice, 12, 111135. [ DOI:10.1080/15598608.2017.1350608] 24. Sriram, T. N. (1987). Sequential Estimation of the Mean of a FirstOrder Stationary Autoregressive Process. The Annals of Statistics, 15, 10791090. [ DOI:10.1214/aos/1176350494] 25. Sriram, T.N. (1988). Sequential Estimation of the Autoregressive Parameter in a First Order Autoregressive Process. Sequential Analysis, 7, 5374. [ DOI:10.1080/07474948808836142] 26. Sriram, T.N. (2001). Fixed Size Confidence Regions for Parameters of Threshold AR(1) Models. Journal of statistical planning and inference, 97, 293304. [ DOI:10.1016/S03783758(00)002469] 27. Sriram, T.N., and Samadi, S.Y. (2019). SecondOrder Analysis of Regret for Sequential Estimation of the Autoregressive Parameter in a FirstOrder Autoregressive Model. Sequential Analysis, 38, 411435. [ DOI:10.1080/07474946.2019.1648933] 28. Stein, C. (1945). A TwoSample Test for a Linear Hypothesis Whose Power Is Independent of the Variance. The Annals of Mathematical Statistics, 16, 243258. [ DOI:10.1214/aoms/1177731088] 29. Stein, C. (1949). Some Problems in Sequential Estimation (Abstract). Econometrica, 17, 7778. 30. Woodroofe, M. (1982). Nonlinear renewal theory in sequential analysis. Philadelphia: SIAM. [ DOI:10.1137/1.9781611970302]
