1. Basawa, I.V., McCormick, W.P., and Sriram, T.N. (1990). Sequential Estimation for Dependent Observations with an Application to Non-Standard Autoregressive Processes. Stochastic processes and their applications, 35, 149-168. [ DOI:10.1016/0304-4149(90)90129-G] 2. Basu, A.K., and Das, J.K. (1997). Sequential Estimation of the Autoregressive Parameters in Ar(p) Model. Sequential Analysis, 16, 1-24. [ DOI:10.1080/07474949708836370] 3. Brockwell, P.J., and Davis, R.A. (1987). Time Series: Theory and Methods. 2nd ed., Springer Texts in Statistics. [ DOI:10.1007/978-1-4899-0004-3] 4. Fakhre-Zakeri, I., and Lee, S. (1992). Sequential Estimation of the Mean of a Linear Process. Sequential analysis, 11, 181-197. [ DOI:10.1080/07474949208836252] 5. Ghosh, M., Mukhopadhyay, N., and Sen, P.K. (1997). Sequential Estimation, New York, Wiley. [ DOI:10.1002/9781118165928] 6. Gombay, E. (2010). Sequential Confidence Intervals for Time Series. Periodica Mathematica Hungarica, 61, 183-193. [ DOI:10.1007/s10998-010-3183-z] 7. Hu, J., and Zhuang, Y. (2020). A broader class of modified two-stage minimum risk point estimation procedures for a normal mean. Communications in Statistics-Simulation and Computation, 1-15. [ DOI:10.1080/03610918.2020.1842887] 8. Karmakar, B., and Mukhopadhyay, I. (2018). Risk Efficient Estimation of Fully Dependent Random Coefficient Autoregressive Models of General Order. Communications in Statistics-Theory and Methods, 47, 4242-4253. [ DOI:10.1080/03610926.2017.1371758] 9. Karmakar, B., and Mukhopadhyay, I. (2019). Risk-Efficient Sequential Estimation of Multivariate Random Coefficient Autoregressive Process. Sequential Analysis, 38, 26-45. [ DOI:10.1080/07474946.2019.1574441] 10. Kashkovsky, D.V., and Konev, V.V. (2008). Sequential Estimates of the Parameters in a Random Coefficient Autoregressive Process. Optoelectronics, Instrumentation and Data Processing, 44, 52-61. [ DOI:10.3103/S8756699008010081] 11. Khalifeh, A., Mahmoudi, E., and Chaturvedi, A. (2020). Sequential Fixed-Accuracy Confidence Intervals for the Stress--Strength Reliability Parameter for the Exponential Distribution: Two-Stage Sampling Procedure. Computational Statistics, 35, 1553-1575. [ DOI:10.1007/s00180-020-00957-5] 12. Kusainov, M.I. (2015). Risk Efficiency of Adaptive One-Step Prediction of Autoregression with Parameter Drift. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel quotesingle naya tekhnika i informatika, 32, 33-43. [ DOI:10.17223/19988605/32/4] 13. Lai, T.L., and Wei, C.Z. (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. The Annals of Statistics, 10, 154-166. [ DOI:10.1214/aos/1176345697] 14. Lee, S. (1994). Sequential Estimation for the Parameters of a Stationary Autoregressive Model. Sequential Analysis, 13, 301-317. [ DOI:10.1080/07474949408836311] 15. Lee, S., and Sriram,T.N. (1999). Sequential Point Estimation of Parameters in a Threshold AR(1) Model. Stochastic processes and their Applications, 84, 343-355. [ DOI:10.1016/S0304-4149(99)00060-5] 16. Mahmoudi, E., Khalifeh, A., and Nekoukhou, V. (2019). Minimum Risk Sequential Point Estimation of the Stress-Strength Reliability Parameter for Exponential Distribution. Sequential Analysis, 38, 279-300. [ DOI:10.1080/07474946.2019.1649347] 17. Merlevede, F., and Peligrad, M. (2013). Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples. The Annals of Probability, 41, 914-960. [ DOI:10.1214/11-AOP694] 18. Moran, P.A.P. (1953). The statistical analysis of the Canadian lynx cycle. Australian Journal of Zoology, 1, 291-298. [ DOI:10.1071/ZO9530291] 19. Mukhopadhyay, N. (1980). A Consistent and Asymptotically Efficient Two-Stage Procedure to Construct Fixed Width Confidence Intervals for the Mean. Metrika, 27, 281-284. [ DOI:10.1007/BF01893607] 20. Mukhopadhyay, N., and Duggan, W.T. (1997). Can a Two-Stage Procedure Enjoy Second-Order Properties. Sankhya: The Indian Journal of Statistics, Series A, 59, 435-448. 21. Mukhopadhyay, N., and Duggan, W.T. (1999). On a Two-Stage Procedure Having Second-Order Properties with Applications. Annals of the Institute of Statistical Mathematics, 51, 621-636. [ DOI:10.1023/A:1004074912105] 22. Mukhopadhyay, N., and Sriram, T.N. (1992). On Sequential Comparisons of Means of First-Order Autoregressive Models. Metrika, 39, 155-164. [ DOI:10.1007/BF02613995] 23. Mukhopadhyay, N., and Zacks, S. (2018). Modified Linex Two-Stage and Purely Sequential Estimation of the Variance in a Normal Distribution with Illustrations Using Horticultural Data. Journal of Statistical Theory and Practice, 12, 111-135. [ DOI:10.1080/15598608.2017.1350608] 24. Sriram, T. N. (1987). Sequential Estimation of the Mean of a First-Order Stationary Autoregressive Process. The Annals of Statistics, 15, 1079-1090. [ DOI:10.1214/aos/1176350494] 25. Sriram, T.N. (1988). Sequential Estimation of the Autoregressive Parameter in a First Order Autoregressive Process. Sequential Analysis, 7, 53-74. [ DOI:10.1080/07474948808836142] 26. Sriram, T.N. (2001). Fixed Size Confidence Regions for Parameters of Threshold AR(1) Models. Journal of statistical planning and inference, 97, 293-304. [ DOI:10.1016/S0378-3758(00)00246-9] 27. Sriram, T.N., and Samadi, S.Y. (2019). Second-Order Analysis of Regret for Sequential Estimation of the Autoregressive Parameter in a First-Order Autoregressive Model. Sequential Analysis, 38, 411-435. [ DOI:10.1080/07474946.2019.1648933] 28. Stein, C. (1945). A Two-Sample Test for a Linear Hypothesis Whose Power Is Independent of the Variance. The Annals of Mathematical Statistics, 16, 243-258. [ DOI:10.1214/aoms/1177731088] 29. Stein, C. (1949). Some Problems in Sequential Estimation (Abstract). Econometrica, 17, 77-78. 30. Woodroofe, M. (1982). Nonlinear renewal theory in sequential analysis. Philadelphia: SIAM. [ DOI:10.1137/1.9781611970302]
|