[Home ] [Archive]    
Main Menu
Journal Information::
Home::
Archive::
For Authors::
For Reviewers::
Principles of Transparency::
Contact us::
::
Search in website

Advanced Search
..
Committed to

AWT IMAGE

Attribution-NonCommercial
CC BY-NC


AWT IMAGE

Open Access Publishing


AWT IMAGE

Prevent Plagiarism

..
Registered in


..
Statistics
Journal volumes: 17
Journal issues: 34
Articles views: 703517
Articles downloads: 365151

Total authors: 581
Unique authors: 422
Repeated authors: 159
Repeated authors percent: 27

Submitted articles: 369
Accepted articles: 266
Rejected articles: 25
Published articles: 219

Acceptance rate: 72.09
Rejection rate: 6.78

Average Time to Accept: 282 days
Average Time to First Review: 27.2 days
Average Time to Publish: 26.1 days

Last 3 years statistics:
Submitted articles: 36
Accepted articles: 23
Rejected articles: 2
Published articles: 10

Acceptance rate: 63.89
Rejection rate: 5.56

Average Time to Accept: 145 days
Average Time to First Review: 6.9 days
Average Time to Publish: 154 days
____
..
:: Volume 17, Issue 1 (8-2020) ::
JSRI 2020, 17(1): 135-156 Back to browse issues page
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
Farzad Eskandari 1, Sima Naghizade Ardebili2 , Dana Naderi3 , Mohammad Mahdavi3 , Ali Fakhrae3
1- Allameh Tabataba'i University , askandari@atu.ac.ir
2- National Organization for Education Testing
3- Allameh Tabataba'i University
Abstract:   (513 Views)
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framework. Also, the optimal properties of estimators have been considered. Finallly, we have studied a real heterogeneous and unstructured data using the KPR model.
Keywords: COVID-19, nonparametric estimation, Kernel polynomial regression model, pridiction analysis, graphical model.
Full-Text [PDF 5246 kb]   (662 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2021/09/13 | Accepted: 2022/05/29 | Published: 2020/08/22
References
1. Amiroch, S., Pradana, M.S., Irawan, M.I., and Mukhlash, I. (2018). Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. International Symposium on Advanced Intelligent Informatics (SAIN), 137-141. [DOI:10.1109/SAIN.2018.8673334]
2. Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical Association, 87, 998-1004. [DOI:10.1080/01621459.1992.10476255]
3. Fong, S.J., Li, G., Dey, N., Crespo, R.G., and Herrera-Viedma, E. (2020). Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak. Int. Journal Interact Multimed Artif Intell, 6, 132. [DOI:10.9781/ijimai.2020.02.002]
4. Gaudart, J., Ghassani, M., Mintsa, J., Waku, J., Rachdi, M., Doumbo, O.K., and Demongeot, J. (2010). Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. 24th International Conference on Advanced Information Networking and Applications Workshops, 751-758. [DOI:10.1109/WAINA.2010.79]
5. Henderson, D.J., and Souto, A.C. (2018). An Introduction to Nonparametric Regression for Labor Economists. Institute of Labor Economics. [DOI:10.2139/ssrn.3286174]
6. Jain, S., Kamimoto, L., Bramley, A.M., Schmitz, A.M., and Benoit, S.R. (2009). Hospitalized patients with 2009 H1N1 influenza in the United States. New England Journal Med., 361, 1935-44. [DOI:10.1056/NEJMoa0906695]
7. Keogh-Brown, M.R., and Smith, R.D. (2008). The economic impact of SARS: how does the reality match the predictions? Health Policy, 88, 110-20. [DOI:10.1016/j.healthpol.2008.03.003]
8. Kim, D., Hong, S., Choi, S., and Yoon, T. (2016). Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. 18th International Conference on Advanced Communication Technology (ICACT), 559-565. [DOI:10.1109/ICACT.2016.7423472]
9. Kumar, J., and Hembram, K.P.S.S. (2020). Epidemiological study of novel coronavirus (COVID-19). ArXiv (preprint). [DOI:10.18203/2394-6040.ijcmph20210828]
10. Park, J., and Kim, J. (2015). Hong Kong sets 'serious' response to South Korea's MERS outbreak. Reuters.
11. Petropoulos, F., and Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PLoS ONE, 15. [DOI:10.1371/journal.pone.0231236]
12. Sultana, N., and Sharma, N. (2018). Statistical models for predicting swine flu incidences in India. The First International Conference on Secure Cyber Computing and Communication (ICSCCC), 134-138. [DOI:10.1109/ICSCCC.2018.8703300]
13. Sun, J. and Loader, C.R. (1994). Simultaneous confidence bands for linear regression and smoothing. The Annals of Statistics, 22, 1328-1345. [DOI:10.1214/aos/1176325631]
14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer Science+Business Media.
15. Wynants, L., Van, Calster, B., Bonten, M., Collins, G.S., Debray, T., and De Vos, M. (2020). Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ, 369 [DOI:10.1101/2020.03.24.20041020]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari F, Naghizade Ardebili S, Naderi D, Mahdavi M, Fakhrae A. Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data. JSRI 2020; 17 (1) :135-156
URL: http://jsri.srtc.ac.ir/article-1-424-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 1 (8-2020) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.07 seconds with 42 queries by YEKTAWEB 4660