1- Allameh Tabataba'i University , askandari@atu.ac.ir 2- National Organization for Education Testing 3- Allameh Tabataba'i University
Abstract: (513 Views)
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framework. Also, the optimal properties of estimators have been considered. Finallly, we have studied a real heterogeneous and unstructured data using the KPR model.
Type of Study: Applicable |
Subject: General Received: 2021/09/13 | Accepted: 2022/05/29 | Published: 2020/08/22
References
1. Amiroch, S., Pradana, M.S., Irawan, M.I., and Mukhlash, I. (2018). Maximum likelihood method on the construction of phylogenetic tree for identification the spreading of SARS epidemic. International Symposium on Advanced Intelligent Informatics (SAIN), 137-141. [DOI:10.1109/SAIN.2018.8673334]
2. Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical Association, 87, 998-1004. [DOI:10.1080/01621459.1992.10476255]
3. Fong, S.J., Li, G., Dey, N., Crespo, R.G., and Herrera-Viedma, E. (2020). Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak. Int. Journal Interact Multimed Artif Intell, 6, 132. [DOI:10.9781/ijimai.2020.02.002]
4. Gaudart, J., Ghassani, M., Mintsa, J., Waku, J., Rachdi, M., Doumbo, O.K., and Demongeot, J. (2010). Demographic and spatial factors as causes of an epidemic spread, the copule approach: application to the retro-prediction of the black death epidemy of 1346. 24th International Conference on Advanced Information Networking and Applications Workshops, 751-758. [DOI:10.1109/WAINA.2010.79]
5. Henderson, D.J., and Souto, A.C. (2018). An Introduction to Nonparametric Regression for Labor Economists. Institute of Labor Economics. [DOI:10.2139/ssrn.3286174]
6. Jain, S., Kamimoto, L., Bramley, A.M., Schmitz, A.M., and Benoit, S.R. (2009). Hospitalized patients with 2009 H1N1 influenza in the United States. New England Journal Med., 361, 1935-44. [DOI:10.1056/NEJMoa0906695]
7. Keogh-Brown, M.R., and Smith, R.D. (2008). The economic impact of SARS: how does the reality match the predictions? Health Policy, 88, 110-20. [DOI:10.1016/j.healthpol.2008.03.003]
8. Kim, D., Hong, S., Choi, S., and Yoon, T. (2016). Analysis of transmission route of MERS coronavirus using decision tree and Apriori algorithm. 18th International Conference on Advanced Communication Technology (ICACT), 559-565. [DOI:10.1109/ICACT.2016.7423472]
9. Kumar, J., and Hembram, K.P.S.S. (2020). Epidemiological study of novel coronavirus (COVID-19). ArXiv (preprint). [DOI:10.18203/2394-6040.ijcmph20210828]
10. Park, J., and Kim, J. (2015). Hong Kong sets 'serious' response to South Korea's MERS outbreak. Reuters.
11. Petropoulos, F., and Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PLoS ONE, 15. [DOI:10.1371/journal.pone.0231236]
12. Sultana, N., and Sharma, N. (2018). Statistical models for predicting swine flu incidences in India. The First International Conference on Secure Cyber Computing and Communication (ICSCCC), 134-138. [DOI:10.1109/ICSCCC.2018.8703300]
13. Sun, J. and Loader, C.R. (1994). Simultaneous confidence bands for linear regression and smoothing. The Annals of Statistics, 22, 1328-1345. [DOI:10.1214/aos/1176325631]
14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer Science+Business Media.
15. Wynants, L., Van, Calster, B., Bonten, M., Collins, G.S., Debray, T., and De Vos, M. (2020). Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ, 369 [DOI:10.1101/2020.03.24.20041020]