1. Bickford, C.A., Mayer, C., and Ware, K. (1963). An efficient sampling design for forest inventory: The northeastern forest survey. Journal of Forestry, 61, 826-833. 2. Brewer, K.R., and Donadio, M.E. (2003). The high entropy variance of the Horvitz-Thompson estimator. Survey Methodology, 29, 189-196. 3. Faure, H., Kritzer, P., and Pillichshammer, F. (2015). From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules. Indagationes Mathematicae, 26, 760-822. [ DOI:10.1016/j.indag.2015.09.001] 4. Grafström, A. (2010). Entropy of unequal probability sampling designs. Statistical Methodology, 7, 84-97. [ DOI:10.1016/j.stamet.2009.10.005] 5. Grafström, A. (2012). Spatially correlated Poisson sampling. Journal of Statistical Planning and Inference, 142, 139-147. [ DOI:10.1016/j.jspi.2011.07.003] 6. Grafström, A., Lundström, N.L., and Schelin, L. (2012). Spatially balanced sampling through the pivotal method. Biometrics, 68, 514-520. [ DOI:10.1111/j.1541-0420.2011.01699.x] 7. Grafström, A., and Lundström, N.L. (2013). Why well spread probability samples are balanced. Open Journal of Statistics, 3, 36-41. [ DOI:10.4236/ojs.2013.31005] 8. Halton, J.H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84-90. [ DOI:10.1007/BF01386213] 9. Hazard, J.W. (1989). Forest survey methods used in the USDA Forest Service. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. 10. Horvitz, D.G., and Thompson, D.J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47, 663-685. [ DOI:10.1080/01621459.1952.10483446] 11. Matei, A., and Tillé, Y. (2005). Evaluation of variance approximations and estimators in maximum entropy sampling with unequal probability and fixed sample size. Journal of Official Statistics, 21, 543-570. 12. Messer, J.J. (1987). National Surface Water Survey: National Stream Survey, Phase I--pilot Survey. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory. 13. Price, C.J., and Price, C.P. (2012). Recycling primes in Halton sequences: an optimization perspective. Adv Model Optim, 14, 17-29. 14. Rao, D.H.F.M.J., Haziza, D., and Mecatti, F. (2008). Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron, 66, 91-108. 15. Robertson, B.L., Brown, J.A., McDonald, T., and Jaksons, P. (2013). BAS: Balanced acceptance sampling of natural resources. Biometrics, 69, 776-784. [ DOI:10.1111/biom.12059] 16. Robertson, B.L., McDonald, T., Price, C.J., and Brown, J.A. (2017). A modification of balanced acceptance sampling. Statistics & Probability Letters, 129, 107-112. [ DOI:10.1016/j.spl.2017.05.004] 17. Robertson, B., McDonald, T., Price, C., and Brown, J. (2018). Halton iterative partitioning: spatially balanced sampling via partitioning. Environmental and Ecological Statistics, 25, 305-323. [ DOI:10.1007/s10651-018-0406-6] 18. Salehi, M., Moradi, M., Al Khayat, J.A., Brown, J., and Yousif, A.E.M. (2015). Inverse adaptive cluster sampling with unequal selection probabilities: case studies on crab holes and arsenic pollution. Australian & New Zealand Journal of Statistics, 57, 189-201. [ DOI:10.1111/anzs.12118] 19. Stevens Jr, D.L., and Olsen, A.R. (2004). Spatially balanced sampling of natural resources. Journal of the american Statistical association, 99, 262-278. [ DOI:10.1198/016214504000000250] 20. Team, R.C. (2013). R: A language and environment for statistical computing. 21. Theobald, D.M., Stevens, D.L., White, D., Urquhart, N.S., Olsen, A.R., and Norman, J.B. (2007). Using GIS to generate spatially balanced random survey designs for natural resource applications. Environmental Management, 40, 134-146. [ DOI:10.1007/s00267-005-0199-x] 22. Tillé, Y., and Haziza, D. (2010). An interesting property of the entropy of some sampling designs. Survey Methodology, 36, 229-231. 23. Wang, X., and Hickernell, F.J. (2000). Randomized halton sequences. Mathematical and Computer Modelling, 32, 887-899. [ DOI:10.1016/S0895-7177(00)00178-3] 24. Yates, F., and Grundy, P.M. (1953). Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society: Series B (Methodological), 15, 253-261. [ DOI:10.1111/j.2517-6161.1953.tb00140.x]
|