[Home ] [Archive]    
:: Volume 16, Issue 1 (9-2019) ::
JSRI 2019, 16(1): 245-254 Back to browse issues page
A Repetitive Sampling-based Control Chart for Multivariate Weighted Poisson Distribution with Two Different Indices‎
Shohreh Enami, Hamzeh Torabi *1
1- , hamzeh.torabi@gmail.com ©
Abstract:   (216 Views)

‎Control charts using repetitive group sampling have been an attractive topic in the last few years‎. ‎This paper presents a control chart for multivariate weighed Poisson distribution by repetitive sampling with two different indexes‎. ‎The effect of these two indexes on the performance of the control chart will be investigated based on the average sequence length criterion‎. ‎Unlike almost all the research studies on this topic‎, ‎this paper considers those cases in which the process parameters in the out-of-control situation are not necessarily a constant proportion of the process parameters in the control situation‎. ‎In this paper‎, ‎we will show that choosing appropriate statistics can be useful in the performance of the control chart and increasing its efficiency.
 
 
Keywords: Multi-attribute process control, average run length, multivariate Poisson distribution, repetitive sampling.‎
Full-Text [PDF 1152 kb]   (61 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/11/9 | Accepted: 2021/01/13 | Published: 2019/09/19
References
1. Ali Raza‎, ‎M‎. ‎and Aslam‎, ‎M.‎, ‎(2018)‎. ‎Design of Control Charts for Multivariate Poisson‎ ‎Distribution Using Generalized Multiple Dependent State Sampling‎. Quality Technology & Quantitative Management‎, ‎doi‎: ‎10.1080/16843703.2018.1497935‎. [DOI:10.1080/16843703.2018.1497935]
2. Aparisi‎, ‎F.‎, ‎Garcia-Bustos‎, ‎S‎. ‎and Epprecht‎, ‎E.K‎. ‎(2014)‎. ‎Optimum Multiple and Multivariate Poisson Statistical Control Charts‎. Quality and Reliability Engineering International, 30‎, ‎221-234‎.
3. Aslam‎, ‎M.‎, ‎Srinivasa Rao‎, ‎G.‎, ‎Ahmad‎, ‎L‎. ‎and Jun‎, ‎C.-H‎. ‎(2017)‎. ‎A Control Chart for Multivariate Poisson Distribution Using Repetitive Sampling‎. Journal of Applied Statistics‎, 44‎, ‎123-136‎. [DOI:10.1080/02664763.2016.1164837]
4. Bersimis‎, ‎S.‎, ‎Psarakis‎, ‎S‎. ‎and Panaretos‎, ‎J‎. ‎(2007)‎. ‎Multivariate Statistical Process Control Charts‎: ‎an Overview‎. Quality and Reliability Engineering International, 23‎, ‎517-543‎. [DOI:10.1002/qre.829]
5. Cozzucoli‎, ‎P.C‎. ‎and Marozzi‎, ‎M‎. ‎(2017)‎. ‎Monitoring Multivariate Poisson Processes‎: ‎A Review and Some New Results‎. Quality Technology & Quantitative Management‎, 15‎, ‎53-68‎. [DOI:10.1080/16843703.2017.1304035]
6. Epprecht‎, ‎E.K.‎, ‎Aparisi‎, ‎F‎. ‎and Garcia-Bustos‎, ‎S‎. ‎(2013)‎. ‎Optimal Linear Combination of Poisson Variables for Multivariate Statistical Process Control‎. Computers & Operations Research, 40‎, ‎3021-3032‎. [DOI:10.1016/j.cor.2013.07.007]
7. Garcia-Bustos‎, ‎S.‎, ‎Mite‎, ‎M‎. ‎and Vera‎, ‎F‎. ‎(2016)‎. ‎Control Charts with Variable Dimension for Linear Combination of Poisson Variables‎. ‎Quality and Reliability Engineering International, 32‎, ‎1741-1755‎. [DOI:10.1002/qre.1910]
8. He‎, ‎S.‎, ‎He‎, ‎Z‎. ‎and Wang‎, ‎G.A‎. ‎(2014)‎. ‎CUSUM Control Charts for Multivariate Poisson Distribution‎. ‎Communications in Statistics-Theory and Methods, 43‎, ‎1192-1208‎. [DOI:10.1080/03610926.2012.667484]
9. Ho‎, ‎L.L‎. ‎and Costa‎, ‎A.F.B‎. ‎(2009)‎. ‎Control Charts for Individual Observations of a Bivariate Poisson Process‎. The International Journal of Advanced Manufacturing Technology, 43‎, ‎744-755‎. [DOI:10.1007/s00170-008-1746-4]
10. Holgate‎, ‎P‎. ‎(1964)‎. ‎Estimation for the Bivariate Poisson Distribution‎. Biometrika, 51‎, ‎241-287‎. [DOI:10.1093/biomet/51.1-2.241]
11. Jones‎, ‎L‎. ‎A.‎, ‎Woodall‎, ‎W.H‎. ‎and Conerly M.D‎. ‎(1999)‎. ‎Exact Properties of Demerit Control Chart‎. Journal of Quality Technology, 31‎, ‎207-215‎. [DOI:10.1080/00224065.1999.11979915]
12. Karlis‎, ‎D‎. ‎(2003)‎. ‎An EM Algorithm for Multivariate Poisson Distribution and Related Models‎. Journal of Applied Statistics, 30‎, ‎63-77‎. [DOI:10.1080/0266476022000018510]
13. Krishnamoorthy‎, ‎A.S‎. ‎(1951)‎. ‎Multivariate Binomial and Poisson Distribution‎, Sankhya, 11‎, ‎117-124‎.
14. Kuo‎, ‎T‎. ‎and Chiu‎, ‎J‎. ‎(2008)‎. ‎Regression-based Limits for Multivariate Poisson Control Chart‎. Paper presented at the Industrial Engineering and Engineering Management‎, ‎2008‎. ‎IEEM 2008‎. ‎IEEE International Conference on‎. [DOI:10.1109/IEEM.2008.4738232]
15. Laungrungrong‎, ‎B.‎, ‎Borror‎, ‎C.M‎. ‎and Montgomery‎, ‎D.C‎. ‎(2014)‎. ‎A One-sided MEWMA Control Chart for Poisson Distributed Data‎. ‎International Journal of Data Analysis Techniques and Strategies, 6‎, ‎15-42‎. [DOI:10.1504/IJDATS.2014.059013]
16. Lu‎, ‎X.S.‎, ‎Xie‎, ‎M‎. ‎and Goh T.N‎. ‎(1998)‎. ‎Control Chart for Multivariate Attribute Process‎. International Journal of Production Research, 36‎, ‎3477-3489‎. [DOI:10.1080/002075498192166]
17. Mason‎, ‎R.L‎. ‎and Young‎, ‎J.C‎. ‎(2002). Multivariate Statistical Process Control with Industrial Applications. The American Statistical Association and the Society for Industrial and Applied Mathematics‎, ‎ASA-SIAM‎, ‎Philadelphia‎. [DOI:10.1137/1.9780898718461]
18. Montgomery‎, ‎D.C‎. ‎(2013)‎. ‎Design and Analysis of Experiments. Inc‎, ‎Cary‎, ‎NC‎, ‎JohnWiley & Sons‎.
19. Niaki‎, ‎S.T.A‎. ‎and Akbari-Nasaji‎, ‎S‎. ‎(2011)‎. ‎A Hybrid Method of Artificial Neural Network and Simulated Annealing in Monitoring Autocorrelated Multi-attribute Processes‎. ‎The International Journal of Advanced Manufacturing Technology, 56‎, ‎777-788‎. [DOI:10.1007/s00170-011-3199-4]
20. Niaki‎, ‎S.T.A‎. ‎and Khedmati‎, ‎M‎. ‎(2013)‎. ‎Estimating the Change Point of the Parameter Vector of Multivariate Poisson Processes Monitored by a Multi-attribute T 2 Control Chart‎. ‎The International Journal of Advanced Manufacturing Technology, 1-18‎.
21. Niaki‎, ‎S.T.A‎. ‎and Khedmati‎, ‎M‎. ‎(2013)‎. ‎Estimating the Change Point of the Parameter‎ ‎Vector of Multivariate Poisson Processes Monitored by a Multiattribute T2 Control Chart‎. The International Journal of Advanced Manufacturing Technology, 64‎, ‎1625-1642‎. [DOI:10.1007/s00170-012-4128-x]
22. Saghir‎, ‎A‎. ‎and Lin‎, ‎Z‎. ‎(2015)‎. ‎Control Charts for Dispersed Count Data‎: ‎an Overview‎. Quality and Reliability Engineering International‎, ‎31‎, ‎725-739‎. [DOI:10.1002/qre.1642]
23. Topalidou‎, ‎E‎. ‎and Psarakis‎, ‎S‎. ‎(2009)‎. ‎Review of Multinomial and Multiattribute Quality Control Charts‎. Quality and Reliability Engineering International‎, ‎25‎, ‎773-804‎. [DOI:10.1002/qre.999]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Enami S, Torabi H. A Repetitive Sampling-based Control Chart for Multivariate Weighted Poisson Distribution with Two Different Indices‎. JSRI. 2019; 16 (1) :245-254
URL: http://jsri.srtc.ac.ir/article-1-358-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 1 (9-2019) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران (علمی - پژوهشی) Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.03 seconds with 29 queries by YEKTAWEB 4331