1. Baratpour, S. and Khammar, A.H. (2018). A Quantilebased Generalized Dynamic Cumulative Measure of Entropy. Communications in Statistics  Theory and Methods, 47, 31043117. [ DOI:10.1080/03610926.2017.1348520] 2. Bartoszewicz, J. (2009). On a Representation of Weighted Distributions. Statistics and Probability Letters, 79, 16901694. [ DOI:10.1016/j.spl.2009.04.007] 3. Belzunce, F. and MartinezRiquelme, C. (2017). On Sufficient Conditions for the Comparison of Some Quantilebased Measures. Communications in Statistics  Theory and Methods, 46, 65126527. [ DOI:10.1080/03610926.2015.1129421] 4. Di Crescenzo, A. and Longobardi, M. (2002). Entropybased Measure of Uncertainty in Past Lifetime Distribution. J. Appl. Probab., 39, 434440. [ DOI:10.1017/S002190020002266X] 5. Ebrahimi, N. (1996). How to Measure Uncertainty in the Residual Life Time Distribution. Sankhya: The Indian Journal of Statistics, Series A, 4856. 6. Fisher, R.A. (1934). The Effects of Methods of Ascertainment upon the Estimation of Frequencies. Ann. Eugenics, 6, 1325. [ DOI:10.1111/j.14691809.1934.tb02105.x] 7. Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and Hall/CRC, Boca Raton, FL. [ DOI:10.1201/9781420035919] 8. Govindarajulu, A. (1977). A Class of Distributions Useful in Lifetesting and Reliability with Applications to Nonparametric Testing. In: Tsokos, C.P., Shimi, I.N. (Eds.), Theory and Applications of Reliability, Vol. 1. Academic Press, New York, pp. 109130. 9. Gupta, R.C. and Arnold, B.C. (2016). Preservation of Failure Rate Function Shape in Weighted Distributions. AStA Advances in Statistical Analysis, 100, 120. [ DOI:10.1007/s101820150244x] 10. Kayal, S. and Moharana, R. (2016). Some Results on a Doubly Truncated Generalized Discrimination Measure. Applications of Mathematics, 61, 585605. [ DOI:10.1007/s1049201601484] 11. Khorashadizadeh, M., Rezaei Roknabadi, A.H. and Mohtashami Borzadaran, G.R. (2013). Doubly Truncated (interval) Cumulative Residual Andpast Entropy. Statistics and Probability Letters, 83, 14641471. [ DOI:10.1016/j.spl.2013.01.033] 12. Kundu, C. (2017). On Weighted Measure of Inaccuracy for Doubly Truncated Random Variables. Communications in Statistics  Theory and Methods, 46, 31353147. [ DOI:10.1080/03610926.2015.1056365] 13. Kundu, C. and Patra, A. (2018). Some Results on Residual Life and Inactivity Time at Random Time. Communications in Statistics  Theory and Methods, 47, 372384. [ DOI:10.1080/03610926.2017.1303735] 14. Kumar, V.R. (2018). A Quantile Approach of Tsallis Entropy for Order Statistics. Physica A: Statistical Mechanics and its Applications, 503, 916928. [ DOI:10.1016/j.physa.2018.03.025] 15. Kumar, V., Taneja, G. and Chhoker, S. (2019). Some Results on Quantilebased Shannon Doubly Truncated Entropy. Statistical Theory and Related Fields, 3, 5970. [ DOI:10.1080/24754269.2019.1586282] 16. Midhu, N.N., Sankaran, P.G. and Nair, N.U. (2013). A Class of Distributions with the Linear Mean Residual Quantile Function and Its Generalizations. Statistical Methodology, 15, 124. [ DOI:10.1016/j.stamet.2013.03.002] 17. Misagh, F. and Yari, G.H. (2010). A Novel Entropybased Measure of Uncertainty to Lifetime Distributions Characterizations. In: Proc. ICMS 10. Ref. No. 100196. Sharjah, UAE. 18. Misagh, F. and Yari, G.H. (2011). On Weighted Interval Entropy. Statistics and Probability Letters, 29, 167176. [ DOI:10.1016/j.spl.2010.11.006] 19. Misagh, F. and Yari, G.H. (2012). Interval Entropy and Informative Distance. Entropy, 14, 480490. [ DOI:10.3390/e14030480] 20. Nair, N.U., Sankaran, P.G. and N. Balakrishnon, (2013). QuantileBased Reliability Analysis. Springer, New York, Heidelberg, Dordrecht, London. [ DOI:10.1007/9780817683610] 21. Nanda, A.K., Sankaran, P.G. and Sunoj, S.M. (2014). Residual Renyis Entropy: A Quantile Approach. Statist. Probab. Lett., 85, 114121. [ DOI:10.1016/j.spl.2013.11.016] 22. Navarro, J. and Ruiz, J.M. (1996). Failurerate Function for Doublytruncated Random Variables. IEEE Transactions on Reliability, 45, 685690. [ DOI:10.1109/24.556594] 23. Navarro, J., Ruiz, J.M. and Del Aguila, Y. (2006). Multivariate Weighted Distributions: a Review and Some Extensions. Statistics, 40, 5164. [ DOI:10.1080/02331880500439691] 24. Parzen, E. (1979). Nonparametric Statistical Data Modeling. J. Amer. Statist. Assoc., 74, 105122. [ DOI:10.1080/01621459.1979.10481621] 25. Qiu, G. (2018). Further Results on the Residual Quantile Entropy. Communications in Statistics  Theory and Methods, 47, 30923103. [ DOI:10.1080/03610926.2017.1348519] 26. Sankaran, P.G. and Sunoj, S.M. (2004). Identification of Models using Failure Rate and Mean Residual Life of Doubly Truncated Random Variables. Statistical Papers, 45, 97109. [ DOI:10.1007/BF02778272] 27. Sankaran, P.G. and Sunoj, S.M. (2017). Quantile based Cumulative Entropies. Communications in Statistics  Theory and Methods, 46, 805814. [ DOI:10.1080/03610926.2015.1006779] 28. Sankaran, P.G., Sunoj, S.M. and Nair, N.U. (2016). KullbackLeibler Divergence: A Quantile Approach. Statistics and Probability Letters, 111, 7279. [ DOI:10.1016/j.spl.2016.01.007] 29. Shannon, C.E., (1948). A Mathematical Theory of Communication. Bell Syst. Tech. J., 27, 379423. [ DOI:10.1002/j.15387305.1948.tb01338.x] 30. Shokrani, A. and Khorashadizadeh, M. (2019). Dynamic Quantile Inaccuracy Measure between Two Past Lifetimes. Journal of Statistical Sciences, 12, 449468. [ DOI:10.29252/jss.12.2.449] 31. Sunoj, S.M. and Sankaran, P.G., (2012). Quantile based Entropy Function. Statistics and Probability Letters, 82, 10491053. [ DOI:10.1016/j.spl.2012.02.005] 32. Sunoj, S.M., Sankaran, P.G. and Nanda, A.K. (2013). Quantile based Entropy Function in Past Lifetime. Statistics and Probability Letters, 83, 366372. [ DOI:10.1016/j.spl.2012.09.016]
