[Home ] [Archive]    
:: Volume 15, Issue 2 (3-2019) ::
JSRI 2019, 15(2): 317-333 Back to browse issues page
A Quantile Approach to the Interval Shannon Entropy
Mohammad Khorashadizadeh *
University of Birjand , m.khorashadizadeh@birjand.ac.ir
Abstract:   (1374 Views)
In this paper, we introduce and study quantile version of the Shannon entropy function via doubly truncated (interval) lifetime, which includes the residual and past lifetimes as special case. We aim to study the use of proposed measure in characterization of distribution functions. Further, we describe a stochastic order and a weighted distribution based on this entropy and show their properties. Finally, some results have been obtained for some distributions such as Uniform, Exponential, Pareto I, Power function and Govindarajulu. Also by analysing a real data the subject has been illustrated. 
Keywords: Shannon entropy, quantile function, generalized failure rate, quantile doubly truncated Shannon entropy.
Full-Text [PDF 592 kb]   (893 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/10/31 | Accepted: 2019/12/8 | Published: 2019/12/12
1. Baratpour, S. and Khammar, A.H. (2018). A Quantile-based Generalized Dynamic Cumulative Measure of Entropy. Communications in Statistics - Theory and Methods, 47, 3104-3117. [DOI:10.1080/03610926.2017.1348520]
2. Bartoszewicz, J. (2009). On a Representation of Weighted Distributions. Statistics and Probability Letters, 79, 1690-1694. [DOI:10.1016/j.spl.2009.04.007]
3. Belzunce, F. and Martinez-Riquelme, C. (2017). On Sufficient Conditions for the Comparison of Some Quantile-based Measures. Communications in Statistics - Theory and Methods, 46, 6512-6527. [DOI:10.1080/03610926.2015.1129421]
4. Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based Measure of Uncertainty in Past Lifetime Distribution. J. Appl. Probab., 39, 434-440. [DOI:10.1017/S002190020002266X]
5. Ebrahimi, N. (1996). How to Measure Uncertainty in the Residual Life Time Distribution. Sankhya: The Indian Journal of Statistics, Series A, 48-56.
6. Fisher, R.A. (1934). The Effects of Methods of Ascertainment upon the Estimation of Frequencies. Ann. Eugenics, 6, 13-25. [DOI:10.1111/j.1469-1809.1934.tb02105.x]
7. Gilchrist, W. (2000). Statistical Modelling with Quantile Functions. Chapman and Hall/CRC, Boca Raton, FL. [DOI:10.1201/9781420035919]
8. Govindarajulu, A. (1977). A Class of Distributions Useful in Lifetesting and Reliability with Applications to Nonparametric Testing. In: Tsokos, C.P., Shimi, I.N. (Eds.), Theory and Applications of Reliability, Vol. 1. Academic Press, New York, pp. 109-130.
9. Gupta, R.C. and Arnold, B.C. (2016). Preservation of Failure Rate Function Shape in Weighted Distributions. AStA Advances in Statistical Analysis, 100, 1-20. [DOI:10.1007/s10182-015-0244-x]
10. Kayal, S. and Moharana, R. (2016). Some Results on a Doubly Truncated Generalized Discrimination Measure. Applications of Mathematics, 61, 585-605. [DOI:10.1007/s10492-016-0148-4]
11. Khorashadizadeh, M., Rezaei Roknabadi, A.H. and Mohtashami Borzadaran, G.R. (2013). Doubly Truncated (interval) Cumulative Residual Andpast Entropy. Statistics and Probability Letters, 83, 1464-1471. [DOI:10.1016/j.spl.2013.01.033]
12. Kundu, C. (2017). On Weighted Measure of Inaccuracy for Doubly Truncated Random Variables. Communications in Statistics - Theory and Methods, 46, 3135-3147. [DOI:10.1080/03610926.2015.1056365]
13. Kundu, C. and Patra, A. (2018). Some Results on Residual Life and Inactivity Time at Random Time. Communications in Statistics - Theory and Methods, 47, 372-384. [DOI:10.1080/03610926.2017.1303735]
14. Kumar, V.R. (2018). A Quantile Approach of Tsallis Entropy for Order Statistics. Physica A: Statistical Mechanics and its Applications, 503, 916-928. [DOI:10.1016/j.physa.2018.03.025]
15. Kumar, V., Taneja, G. and Chhoker, S. (2019). Some Results on Quantile-based Shannon Doubly Truncated Entropy. Statistical Theory and Related Fields, 3, 59-70. [DOI:10.1080/24754269.2019.1586282]
16. Midhu, N.N., Sankaran, P.G. and Nair, N.U. (2013). A Class of Distributions with the Linear Mean Residual Quantile Function and Its Generalizations. Statistical Methodology, 15, 1-24. [DOI:10.1016/j.stamet.2013.03.002]
17. Misagh, F. and Yari, G.H. (2010). A Novel Entropy-based Measure of Uncertainty to Lifetime Distributions Characterizations. In: Proc. ICMS 10. Ref. No. 100196. Sharjah, UAE.
18. Misagh, F. and Yari, G.H. (2011). On Weighted Interval Entropy. Statistics and Probability Letters, 29, 167-176. [DOI:10.1016/j.spl.2010.11.006]
19. Misagh, F. and Yari, G.H. (2012). Interval Entropy and Informative Distance. Entropy, 14, 480-490. [DOI:10.3390/e14030480]
20. Nair, N.U., Sankaran, P.G. and N. Balakrishnon, (2013). Quantile-Based Reliability Analysis. Springer, New York, Heidelberg, Dordrecht, London. [DOI:10.1007/978-0-8176-8361-0]
21. Nanda, A.K., Sankaran, P.G. and Sunoj, S.M. (2014). Residual Renyis Entropy: A Quantile Approach. Statist. Probab. Lett., 85, 114-121. [DOI:10.1016/j.spl.2013.11.016]
22. Navarro, J. and Ruiz, J.M. (1996). Failure-rate Function for Doubly-truncated Random Variables. IEEE Transactions on Reliability, 45, 685-690. [DOI:10.1109/24.556594]
23. Navarro, J., Ruiz, J.M. and Del Aguila, Y. (2006). Multivariate Weighted Distributions: a Review and Some Extensions. Statistics, 40, 51-64. [DOI:10.1080/02331880500439691]
24. Parzen, E. (1979). Nonparametric Statistical Data Modeling. J. Amer. Statist. Assoc., 74, 105-122. [DOI:10.1080/01621459.1979.10481621]
25. Qiu, G. (2018). Further Results on the Residual Quantile Entropy. Communications in Statistics - Theory and Methods, 47, 3092-3103. [DOI:10.1080/03610926.2017.1348519]
26. Sankaran, P.G. and Sunoj, S.M. (2004). Identification of Models using Failure Rate and Mean Residual Life of Doubly Truncated Random Variables. Statistical Papers, 45, 97-109. [DOI:10.1007/BF02778272]
27. Sankaran, P.G. and Sunoj, S.M. (2017). Quantile based Cumulative Entropies. Communications in Statistics - Theory and Methods, 46, 805-814. [DOI:10.1080/03610926.2015.1006779]
28. Sankaran, P.G., Sunoj, S.M. and Nair, N.U. (2016). Kullback-Leibler Divergence: A Quantile Approach. Statistics and Probability Letters, 111, 72-79. [DOI:10.1016/j.spl.2016.01.007]
29. Shannon, C.E., (1948). A Mathematical Theory of Communication. Bell Syst. Tech. J., 27, 379-423. [DOI:10.1002/j.1538-7305.1948.tb01338.x]
30. Shokrani, A. and Khorashadizadeh, M. (2019). Dynamic Quantile Inaccuracy Measure between Two Past Lifetimes. Journal of Statistical Sciences, 12, 449-468. [DOI:10.29252/jss.12.2.449]
31. Sunoj, S.M. and Sankaran, P.G., (2012). Quantile based Entropy Function. Statistics and Probability Letters, 82, 1049-1053. [DOI:10.1016/j.spl.2012.02.005]
32. Sunoj, S.M., Sankaran, P.G. and Nanda, A.K. (2013). Quantile based Entropy Function in Past Lifetime. Statistics and Probability Letters, 83, 366-372. [DOI:10.1016/j.spl.2012.09.016]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khorashadizadeh M. A Quantile Approach to the Interval Shannon Entropy. JSRI. 2019; 15 (2) :317-333
URL: http://jsri.srtc.ac.ir/article-1-313-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 15, Issue 2 (3-2019) Back to browse issues page
مجله‌ی پژوهش‌های آماری ایران Journal of Statistical Research of Iran JSRI
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4463